8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploration of the Intriguing Photovoltaic Behavior for Fused Indacenodithiophene-Based A–D–A Conjugated Systems: A DFT Model Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many researchers are engaged nowadays in developing efficient photovoltaic materials to accomplish the demand of modern technology. Nonfullerene small molecular acceptors (NF-SMAs) show potential photovoltaic performance, accelerating the development of organic solar cells (OSCs). Herein, the first theoretical designing of a series of indacenodithiophene-based ( IDIC1IDIC6) acceptor chromophores was done by structural tailoring with various well-known acceptors from the recently synthesized IDICR molecule. For the selection of the best level of density functional theory (DFT), various functionals such as B3LYP, M06-2X, CAM-B3LYP, and ωB97XD with the 6-311G(d,p) basis set were used for the UV–visible analysis of IDICR. Consequently, UV–visible results revealed that an interesting agreement was found between experimental and DFT-based values at the B3LYP level. Therefore, quantum chemical investigations were executed at the B3LYP/6-311G(d,p) level to evaluate the photovoltaic and optoelectronic properties. Structural tailoring with various acceptors resulted in a narrowing of the energy gap (2.245–2.070 eV) with broader absorption spectra (750.919–660.544 nm). An effective transfer of charge toward lowest unoccupied molecular orbitals (LUMOs) from highest occupied molecular orbitals (HOMOs) was studied, which played a crucial role in conducting materials. Further, open circuit voltage ( V oc) analysis was performed with respect to HOMO PBDB-T –LUMO ACCEPTOR, and all of the derivatives exhibited a comparable value of voltage with that of the parent chromophore. Lower reorganization energies in titled chromophores for holes and electrons were examined, which indicated the higher rate of mobility of charges. Interestingly, all of the designed chromophores exhibited a preferable optoelectronic response compared to the reference molecule. Therefore, this computed framework demonstrates that conceptualized chromophores are preferable and might be used to build high-performance organic solar cells in the future.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Multiwfn: a multifunctional wavefunction analyzer.

          Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

            Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An electron acceptor challenging fullerenes for efficient polymer solar cells.

              A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion efficiencies of up to 6.8%, a record for fullerene-free PSCs.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                29 March 2022
                12 April 2022
                : 7
                : 14
                : 11606-11617
                Affiliations
                []Chemistry Department, Faculty of Science, King Abdulaziz University , Jeddah 21589, P.O. Box 80203, Saudi Arabia
                []Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University , Jeddah 21589, P.O. Box 80203, Saudi Arabia
                [§ ]Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology , Rahim Yar Khan 64200, Pakistan
                Author notes
                Author information
                https://orcid.org/0000-0002-1899-5689
                https://orcid.org/0000-0001-7905-3209
                Article
                10.1021/acsomega.1c06219
                9017102
                35449987
                ef46e021-63b5-4f86-92d7-f6f66c16f6d0
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 05 November 2021
                : 15 March 2022
                Funding
                Funded by: King Abdulaziz University, doi 10.13039/501100004054;
                Award ID: G:309-130-1442
                Categories
                Article
                Custom metadata
                ao1c06219
                ao1c06219

                Comments

                Comment on this article