28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atomic-scale study of human dental enamel reveals an intergranular amorphous phase thought to be responsible for tooth decay.

          Abstract

          Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg 2+ ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The role of bacteria in the caries process: ecological perspectives.

          Dental biofilms produce acids from carbohydrates that result in caries. According to the extended caries ecological hypothesis, the caries process consists of 3 reversible stages. The microflora on clinically sound enamel surfaces contains mainly non-mutans streptococci and Actinomyces, in which acidification is mild and infrequent. This is compatible with equilibrium of the demineralization/remineralization balance or shifts the mineral balance toward net mineral gain (dynamic stability stage). When sugar is supplied frequently, acidification becomes moderate and frequent. This may enhance the acidogenicity and acidurance of the non-mutans bacteria adaptively. In addition, more aciduric strains, such as 'low-pH' non-mutans streptococci, may increase selectively. These microbial acid-induced adaptation and selection processes may, over time, shift the demineralization/remineralization balance toward net mineral loss, leading to initiation/progression of dental caries (acidogenic stage). Under severe and prolonged acidic conditions, more aciduric bacteria become dominant through acid-induced selection by temporary acid-impairment and acid-inhibition of growth (aciduric stage). At this stage, mutans streptococci and lactobacilli as well as aciduric strains of non-mutans streptococci, Actinomyces, bifidobacteria, and yeasts may become dominant. Many acidogenic and aciduric bacteria are involved in caries. Environmental acidification is the main determinant of the phenotypic and genotypic changes that occur in the microflora during caries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amorphous calcium phosphates: synthesis, properties and uses in biomaterials.

            C Combes, C Rey (2010)
            This review paper on amorphous calcium phosphates (ACPs) provides an update on several aspects of these compounds which have led to many studies and some controversy since the 1970s, particularly because of the lack of irrefutable proof of the occurrence of an ACP phase in mineralised tissues of vertebrates. The various synthesis routes of ACPs with different compositions are reported and the techniques used to characterise this phase are reviewed. We focus on the various physico-chemical properties of ACPs, especially the reactivity in aqueous media, which have been exploited to prepare bioactive bone substitutes, particularly in the form of coatings and cements for orthopaedic applications and composites for dental applications. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transient amorphous calcium phosphate in forming enamel.

              Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using X-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence of transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal.
                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                September 2016
                07 September 2016
                : 2
                : 9
                : e1601145
                Affiliations
                [1 ]School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
                [2 ]Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales 2006, Australia.
                [3 ]Faculty of Dentistry, University of Sydney, Sydney, New South Wales 2006, Australia.
                [4 ]Institute of Dental Research, Westmead Centre for Oral Health, Sydney, New South Wales 2145, Australia.
                [5 ]School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.
                [6 ]Faculty of Dentistry, Kuwait University, P. O. Box 24923, Safat 13110, Kuwait.
                Author notes
                [* ]Corresponding author. Email: julie.cairney@ 123456sydney.edu.au
                Article
                1601145
                10.1126/sciadv.1601145
                5014466
                27617291
                eea277d7-8a49-4d1b-8d2f-8e8768083a72
                Copyright © 2016, The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 19 May 2016
                : 09 August 2016
                Funding
                Funded by: ARC;
                Award ID: ID0EARAI
                Award ID: DP 160104602
                Award Recipient :
                Categories
                Research Article
                Research Articles
                SciAdv r-articles
                Physical Science
                Custom metadata
                Nielsen Santos

                human dental enamel,mg-rich amorphous phase,tooth decay,atom probe tomography

                Comments

                Comment on this article