25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactions of the G quartet forming semaphorin 3F RNA with the RGG box domain of the fragile X protein family

      research-article
      , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fragile X syndrome, the most common cause of inherited mental retardation, is caused by the transcriptional silencing of the fmr1 gene due to an unstable expansion of a CGG trinucleotide repeat and its subsequent hypermethylation in its 5′ UTR. This gene encodes for the fragile X mental retardation protein (FMRP), an RNA-binding protein that has been shown to use its RGG box domain to bind to G quartet-forming RNA. In this study, we performed a detailed analysis of the interactions between the FMRP RGG box domain and one of its proposed RNA targets, human semaphorin 3F (S3F) RNA by using biophysical methods such as fluorescence, UV and circular dichroism spectroscopy. We show that this RNA forms a G quartet-containing structure, which is recognized with high affinity and specificity by the FMRP RGG box. In addition, we analyzed the interactions of human S3F RNA with the RGG box and RG cluster of the two FMRP autosomal paralogs, the FXR1P and FXR2P. We found that this RNA is bound with high affinity and specificity only by the FXR1P RGG box, but not by the FXR2P RG cluster. Both FMRP and FXR1P RGG box are able to unwind the G quartet structure of S3F RNA, however, the peptide concentrations required in this process are very different: a ratio of 1:6 RNA:FMRP RGG box versus 1:2 RNA:FXR1P RGG box.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function.

          Loss of fragile X mental retardation protein (FMRP) function causes the fragile X mental retardation syndrome. FMRP harbors three RNA binding domains, associates with polysomes, and is thought to regulate mRNA translation and/or localization, but the RNAs to which it binds are unknown. We have used RNA selection to demonstrate that the FMRP RGG box binds intramolecular G quartets. This data allowed us to identify mRNAs encoding proteins involved in synaptic or developmental neurobiology that harbor FMRP binding elements. The majority of these mRNAs have an altered polysome association in fragile X patient cells. These data demonstrate that G quartets serve as physiologically relevant targets for FMRP and identify mRNAs whose dysregulation may underlie human mental retardation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Following G-quartet formation by UV-spectroscopy.

            Oligodeoxynucleotides which include stretches of guanines form a well-known tetrameric structure. We show that the recording of reversible absorbance changes at 295 nm allows to precisely monitor intramolecular guanine (G)-quartet formation and dissociation. Accurate Tm and thermodynamic values could be easily extracted from the data, whereas classical recordings at 260 nm led to a much larger uncertainty and in extreme cases, to completely inaccurate measurements. This inverted denaturation profile was observed for all G-quartet-forming oligonucleotides studied so far. This technique is very useful in all cases where intramolecular or intermolecular quadruplex formation is suspected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loop-length-dependent folding of G-quadruplexes.

              Guanine-rich DNA sequences can form a large number of structurally diverse quadruplexes. These vary in terms of strand polarity, loop composition, and conformation. We have derived guidelines for understanding the influence of loop length on the structure adopted by intramolecular quadruplex-forming sequences, using a combination of experimental (using CD and UV melting data) and molecular modeling and simulation techniques. We find that a parallel-stranded intramolecular quadruplex structure is the only possible fold when three single residue loops are present. When single thymine loops are present in combination with longer length loops, or when all loops are longer than two residues, both parallel- and antiparallel-folded structures are able to form. Multiple conformations of each structure are likely to coexist in solution, as they were calculated to have very similar free energies.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                August 2007
                9 August 2007
                9 August 2007
                : 35
                : 16
                : 5379-5392
                Affiliations
                Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
                Author notes
                *To whom correspondence should be addressed. +1 412 396 1430+1 412 396 5683 mihailescum@ 123456duq.edu
                Article
                10.1093/nar/gkm581
                2018618
                17693432
                ead4fdd3-d898-4e6c-a45f-d77fe1b592fd
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2007
                : 13 July 2007
                : 16 July 2007
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article