11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bioactive components of caper (Capparis spinosa L.) from Sicily and antioxidant effects in a red meat simulated gastric digestion.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An increasing body of evidence on the association between adherence to the Mediterranean diet and healthy status is being accumulated. Floral buds of Capparis spinosa L. are commonly used in the Mediterranean cuisine as flavoring for meat and other foods. The present study evaluated bioactive components and antioxidant activity of Sicilian capers stabilized in salt. Whereas alpha-tocopherol was absent, low levels of gamma-tocopherol and vitamin C were measured. With reference to one serving size (8.6 g of capers), rutin was 13.76 mg, isothiocyanates, recently acknowledged as anticarcinogen phytochemicals, were 42.14 micromol, total phenols were 4.19 mg of gallic acid equivalents (GAE), and the total antioxidant potential measured using the [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] diammonium salt (ABTS) cation radical decolorization assay was 25.8 micromol of Trolox equivalents. The antioxidative activity of a caper hydrophilic extract was assessed in a number of assays. The extract at 3.5 and 7.0 microM GAE exhibited a dose-dependent peroxyl radical scavenging activity in a methyl linoleate methanol solution oxidized by azo initiator, and reduced hypervalent iron myoglobin species formed from met-Mb an H 2O 2, at 180 microM GAE. The hydrophilic extract, at 70-280 microM GAE, caused a dose-dependent inhibition of lipid autoxidation in heated red meat, incubated with simulated gastric fluid for 180 min. In the same model rutin tested at a concentration corresponding to its content in the extract was ineffective, and alpha-tocopherol at 25 microM was poorly effective. The hydrophilic extract (70 microM GAE) prevented the consumption of the co-incubated alpha-tocopherol, whereas lipid oxidation was inhibited for the experimental time, suggesting cooperative interactions between extract components and the vitamin. The findings encourage the use of caper with foods that contribute oxidizable lipids in view of the association between dietary oxidized lipids and risk of oxidative stress-based diseases.

          Related collections

          Author and article information

          Journal
          J. Agric. Food Chem.
          Journal of agricultural and food chemistry
          American Chemical Society (ACS)
          0021-8561
          0021-8561
          Oct 17 2007
          : 55
          : 21
          Affiliations
          [1 ] Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo, Via M. Cipolla 74, 90128 Palermo, Italy. mal96@unipa.it
          Article
          10.1021/jf0714113
          17887802
          e7a2f19a-bb0b-4fc3-9a2a-42336a616b19
          History

          Comments

          Comment on this article