62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α vβ 3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion.

            The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread. Upregulation of alpha5 integrin also occurs in the same stiffness range, but exogenous expression of alpha5 integrin is not sufficient to cause cell spreading on soft surfaces. Neutrophils, in contrast, show no dependence of either resting shape or ability to spread after activation when cultured on surfaces as soft as 2 Pa compared to glass. The shape and cytoskeletal differences evident in single cells on soft compared to hard substrates are eliminated when fibroblasts or endothelial cells make cell-cell contact. These results support the hypothesis that mechanical factors impact different cell types in fundamentally different ways, and can trigger specific changes similar to those stimulated by soluble ligands. Copyright 2004 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CDK inhibitors: cell cycle regulators and beyond.

              First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1, p27Kip1, and p57Kip2 have emerged as multifaceted proteins with functions beyond cell cycle regulation. In addition to regulating the cell cycle, Cip/Kip proteins play important roles in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. A complex phosphorylation network modulates Cip/Kip protein functions by altering their subcellular localization, protein-protein interactions, and stability. These functions are essential for the maintenance of normal cell and tissue homeostasis, in processes ranging from embryonic development to tumor suppression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                31 October 2012
                : 7
                : 10
                : e46889
                Affiliations
                [1 ]Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
                [2 ]The Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
                [3 ]Division of Medical Engineering Research, National Health Research Institutes, Zhunan, Taiwan
                [4 ]Institute of Bioinformatics and Structural Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
                The University of Akron, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YTY JC YSL SC. Performed the experiments: YTY SSH JC KCW. Analyzed the data: YTY SSH KCW. Contributed reagents/materials/analysis tools: JC SSH JJC. Wrote the paper: YTY JJC YSL SC.

                Article
                PONE-D-12-16147
                10.1371/journal.pone.0046889
                3485289
                23118862
                e5adf35c-baf1-48d1-8581-5d83316dbede
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 June 2012
                : 6 September 2012
                Page count
                Pages: 13
                Funding
                This work was supported in part by National Institutes of Health Research Grants HL104402 and HL106579 (S.C.), NSC-101-2325-B-400-009 and NSC-100-2321-B-400-001 (J.-J.C.), and NSC-99-2911-I-009-101 to UST-UCSD International Center of Excellence in Advanced Bioengineering (to S.C. and J.-J.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Molecular Cell Biology
                Cellular Types
                Endothelial Cells
                Signal Transduction
                Signaling Cascades
                Stress Signaling Cascade
                Signaling in Selected Disciplines
                Developmental Signaling
                Signaling Pathways
                Engineering
                Bioengineering
                Biomedical Engineering

                Uncategorized
                Uncategorized

                Comments

                Comment on this article