7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell death in cancer chemotherapy using taxanes

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer cells evolve to be refractory to the intrinsic programmed cell death mechanisms, which ensure cellular tissue homeostasis in physiological conditions. Chemotherapy using cytotoxic drugs seeks to eliminate cancer cells but spare non-cancerous host cells by exploring a likely subtle difference between malignant and benign cells. Presumably, chemotherapy agents achieve efficacy by triggering programmed cell death machineries in cancer cells. Currently, many major solid tumors are treated with chemotherapy composed of a combination of platinum agents and taxanes. Platinum agents, largely cis-platin, carboplatin, and oxaliplatin, are DNA damaging agents that covalently form DNA addicts, triggering DNA repair response pathways. Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are microtubule stabilizing drugs which are often very effective in purging cancer cells in clinical settings. Generally, it is thought that the stabilization of microtubules by taxanes leads to mitotic arrest, mitotic catastrophe, and the triggering of apoptotic programmed cell death. However, the precise mechanism(s) of how mitotic arrest and catastrophe activate the caspase pathway has not been established. Here, we briefly review literature on the involvement of potential cell death mechanisms in cancer therapy. These include the classical caspase-mediated apoptotic programmed cell death, necroptosis mediated by MLKL, and pore forming mechanisms in immune cells, etc. In particular, we discuss a newly recognized mechanism of cell death in taxane-treatment of cancer cells that involves micronucleation and the irreversible rupture of the nuclear membrane. Since cancer cells are commonly retarded in responding to programmed cell death signaling, stabilized microtubule bundle-induced micronucleation and nuclear membrane rupture, rather than triggering apoptosis, may be a key mechanism accounting for the success of taxanes as anti-cancer agents.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunotherapy using checkpoint blockade

          The release of negative regulators of immune activation (immune checkpoints) that limit antitumor responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte antigen-4 (CTLA-4) or the programmed death-1 (PD-1) pathway, either alone or in combination. The main premise for inducing an immune response is the pre-existence of antitumor T cells that were limited by specific immune checkpoints. Most patients who have tumor responses maintain long lasting disease control, yet one third of patients relapse. Mechanisms of acquired resistance are currently poorly understood, but evidence points to alterations that converge on the antigen presentation and interferon gamma signaling pathways. New generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondria and apoptosis.

            D Green, J Reed (1998)
            A variety of key events in apoptosis focus on mitochondria, including the release of caspase activators (such as cytochrome c), changes in electron transport, loss of mitochondrial transmembrane potential, altered cellular oxidation-reduction, and participation of pro- and antiapoptotic Bcl-2 family proteins. The different signals that converge on mitochondria to trigger or inhibit these events and their downstream effects delineate several major pathways in physiological cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics

              The term apoptosis is proposed for a hitherto little recognized mechanism of controlled cell deletion, which appears to play a complementary but opposite role to mitosis in the regulation of animal cell populations. Its morphological features suggest that it is an active, inherently programmed phenomenon, and it has been shown that it can be initiated or inhibited by a variety of environmental stimuli, both physiological and pathological. The structural changes take place in two discrete stages. The first comprises nuclear and cytoplasmic condensation and breaking up of the cell into a number of membrane-bound, ultrastructurally well-preserved fragments. In the second stage these apoptotic bodies are shed from epithelial-lined surfaces or are taken up by other cells, where they undergo a series of changes resembling in vitro autolysis within phagosomes, and are rapidly degraded by lysosomal enzymes derived from the ingesting cells. Apoptosis seems to be involved in cell turnover in many healthy adult tissues and is responsible for focal elimination of cells during normal embryonic development. It occurs spontaneously in untreated malignant neoplasms, and participates in at least some types of therapeutically induced tumour regression. It is implicated in both physiological involution and atrophy of various tissues and organs. It can also be triggered by noxious agents, both in the embryo and adult animal. Images Fig. 8-10 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 11-14 Fig. 15-18 Fig. 19 Fig. 20-22 Fig. 23 and 24
                Bookmark

                Author and article information

                Contributors
                Role: Role:
                Role: Role: Role:
                Role: Role:
                Role:
                URI : https://loop.frontiersin.org/people/98730/overviewRole:
                URI : https://loop.frontiersin.org/people/120204/overviewRole: Role: Role:
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                05 January 2024
                2023
                : 14
                : 1338633
                Affiliations
                [1] 1 Department of Biology , University of Miami , Coral Gables, FL, United States
                [2] 2 Sylvester Comprehensive Cancer Center , University of Miami Miller School of Medicine , Miami, FL, United States
                [3] 3 Department of Obstetrics , Gynecology and Reproductive Sciences , University of Miami Miller School of Medicine , Miami, FL, United States
                [4] 4 College of Pharmacy and Health Sciences , St. John’s University , Queens, NY, United States
                [5] 5 Department of Radiation Oncology , University of Miami Miller School of Medicine , Miami, FL, United States
                Author notes

                Edited by: Benyi Li, University of Kansas Medical Center, United States

                Reviewed by: Zhifen Cui, Duke University, United States

                Jingyue Yan, The Ohio State University, United States

                *Correspondence: Xiang-Xi Xu, xxu2@ 123456med.miami.edu
                Article
                1338633
                10.3389/fphar.2023.1338633
                10796453
                38249350
                e408983b-1457-452d-835c-ec103ea4697f
                Copyright © 2024 Xu, Xu, Smith, Fleishman, Chen and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 November 2023
                : 13 December 2023
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. X-XX and the cited work from the lab were partially supported by NIH funding R01 CA095071, CA79716, and CA75389 to X-XX from NCI, NIH, and seed funding from University of Miami.
                Categories
                Pharmacology
                Perspective
                Custom metadata
                Pharmacology of Anti-Cancer Drugs

                Pharmacology & Pharmaceutical medicine
                chemotherapy,taxanes,taxol,paclitaxel,microtubules,mitosis,proliferation,nuclear envelope

                Comments

                Comment on this article