56
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Side Chain Conformational Averaging in Human Dihydrofolate Reductase

      research-article
      , ,
      Biochemistry
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The three-dimensional structures of the dihydrofolate reductase enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather low level of sequence identity. Whereas the active site loops of ecDHFR undergo major conformational rearrangements during progression through the reaction cycle, hDHFR remains fixed in a closed loop conformation in all of its catalytic intermediates. To elucidate the structural and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility and dynamics in complexes of hDHFR that represent intermediates in the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion experiments show that, in marked contrast to the functionally important motions that feature prominently in the catalytic intermediates of ecDHFR, millisecond time scale fluctuations cannot be detected for hDHFR side chains. Ligand flux in hDHFR is thought to be mediated by conformational changes between a hinge-open state when the substrate/product-binding pocket is vacant and a hinge-closed state when this pocket is occupied. Comparison of X-ray structures of hinge-open and hinge-closed states shows that helix αF changes position by sliding between the two states. Analysis of χ 1 rotamer populations derived from measurements of 3 J CγCO and 3 J CγN couplings indicates that many of the side chains that contact helix αF exhibit rotamer averaging that may facilitate the conformational change. The χ 1 rotamer adopted by the Phe31 side chain depends upon whether the active site contains the substrate or product. In the holoenzyme (the binary complex of hDHFR with reduced nicotinamide adenine dinucleotide phosphate), a combination of hinge opening and a change in the Phe31 χ 1 rotamer opens the active site to facilitate entry of the substrate. Overall, the data suggest that, unlike ecDHFR, hDHFR requires minimal backbone conformational rearrangement as it proceeds through its enzymatic cycle, but that ligand flux is brokered by more subtle conformational changes that depend on the side chain motions of critical residues.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence.

          The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) cycles through five detectable kinetic intermediates: holoenzyme, Michaelis complex, ternary product complex, tetrahydrofolate (THF) binary complex, and THF.NADPH complex. Isomorphous crystal structures analogous to these five intermediates and to the transition state (as represented by the methotrexate-NADPH complex) have been used to assemble a 2.1 A resolution movie depicting loop and subdomain movements during the catalytic cycle (see Supporting Information). The structures suggest that the M20 loop is predominantly closed over the reactants in the holoenzyme, Michaelis, and transition state complexes. But, during the remainder of the cycle, when nicotinamide is not bound, the loop occludes (protrudes into) the nicotinamide-ribose binding pocket. Upon changing from the closed to the occluded conformation, the central portion of the loop rearranges from beta-sheet to 3(10) helix. The change may occur by way of an irregularly structured open loop conformation, which could transiently admit a water molecule into position to protonate N5 of dihydrofolate. From the Michaelis to the transition state analogue complex, rotation between two halves of ecDHFR, the adenosine binding subdomain and loop subdomain, closes the (p-aminobenzoyl)glutamate (pABG) binding crevice by approximately 0.5 A. Resulting enhancement of contacts with the pABG moiety may stabilize puckering at C6 of the pteridine ring in the transition state. The subdomain rotation is further adjusted by cofactor-induced movements (approximately 0.5 A) of helices B and C, producing a larger pABG cleft in the THF.NADPH analogue complex than in the THF analogue complex. Such movements may explain how THF release is assisted by NADPH binding. Subdomain rotation is not observed in vertebrate DHFR structures, but an analogous loop movement (residues 59-70) appears to similarly adjust the pABG cleft width, suggesting that these movements are important for catalysis. Loop movement, also unobserved in vertebrate DHFR structures, may preferentially weaken NADP+ vs NADPH binding in ecDHFR, an evolutionary adaptation to reduce product inhibition in the NADP+ rich environment of prokaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure, dynamics, and catalytic function of dihydrofolate reductase.

            Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An NMR perspective on enzyme dynamics.

                Bookmark

                Author and article information

                Journal
                Biochemistry
                Biochemistry
                bi
                bichaw
                Biochemistry
                American Chemical Society
                0006-2960
                1520-4995
                05 February 2015
                05 February 2014
                25 February 2014
                : 53
                : 7
                : 1134-1145
                Affiliations
                [1]Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
                Author notes
                [* ]Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037. E-mail: wright@ 123456scripps.edu . Telephone: (858) 784-9721. Fax: (858) 784-9822.
                Article
                10.1021/bi4015314
                3985697
                24498949
                e3c3bf16-46cb-45f7-baf7-91d4b5b4e0a1
                Copyright © 2014 American Chemical Society
                History
                : 13 November 2013
                : 04 February 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                bi4015314
                bi-2013-015314

                Biochemistry
                Biochemistry

                Comments

                Comment on this article