87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Past, Present, and Future of Japanese Encephalitis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          JE is increasing in some areas (due to population growth and intensified rice irrigation) but declining in others.

          Abstract

          Japanese encephalitis (JE), a vector-borne viral disease, is endemic to large parts of Asia and the Pacific. An estimated 3 billion people are at risk, and JE has recently spread to new territories. Vaccination programs, increased living standards, and mechanization of agriculture are key factors in the decline in the incidence of this disease in Japan and South Korea. However, transmission of JE is likely to increase in Bangladesh, Cambodia, Indonesia, Laos, Myanmar, North Korea, and Pakistan because of population growth, intensified rice farming, pig rearing, and the lack of vaccination programs and surveillance. On a global scale, however, the incidence of JE may decline as a result of large-scale vaccination programs implemented in China and India.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Global Change and Human Vulnerability to Vector-Borne Diseases

          Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin and evolution of Japanese encephalitis virus in southeast Asia.

            Since it emerged in Japan in the 1870s, Japanese encephalitis has spread across Asia and has become the most important cause of epidemic encephalitis worldwide. Four genotypes of Japanese encephalitis virus (JEV) are presently recognized (representatives of genotypes I to III have been fully sequenced), but its origin is not known. We have determined the complete nucleotide and amino acid sequence of a genotype IV Indonesian isolate (JKT6468) which represents the oldest lineage, compared it with other fully sequenced genomes, and examined the geographical distribution of all known isolates. JKT6468 was the least similar, with nucleotide divergence ranging from 17.4 to 19.6% and amino acid divergence ranging from 4.7 to 6.5%. It included an unusual series of amino acids at the carboxy terminus of the core protein unlike that seen in other JEV strains. Three signature amino acids in the envelope protein (including E327 Leu-->Thr/Ser on the exposed lateral surface of the putative receptor binding domain) distinguished genotype IV strains from more recent genotypes. Analysis of all 290 JEV isolates for which sequence data are available showed that the Indonesia-Malaysia region has all genotypes of JEV circulating, whereas only more recent genotypes circulate in other areas (P < 0.0001). These results suggest that JEV originated from its ancestral virus in the Indonesia-Malaysia region and evolved there into the different genotypes which then spread across Asia. Our data, together with recent evidence on the origins of other emerging viruses, including dengue virus and Nipah virus, imply that tropical southeast Asia may be an important zone for emerging pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle?

              Yellow fever and dengue are old diseases, having caused major epidemics in centuries past. Both were effectively controlled in the mid 1900s, yellow fever in Francophone Africa by vaccination and yellow fever and dengue in the Americas by effective control of the principal urban vector of both viruses, Aedes aegypti. In the last 25 years of the 20th century, however, there was a resurgence of yellow fever in Africa, and of dengue worldwide. The factors responsible for this resurgence are discussed, as are current options for prevention and control.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                January 2009
                : 15
                : 1
                : 1-7
                Affiliations
                [1]Swiss Tropical Institute, Basel, Switzerland
                Author notes
                Address for correspondence: Tobias E. Erlanger, Department of Public Health and Epidemiology, Swiss Tropical Institute, PO Box CH-4002, Basel, Switzerland; email: tobias@ 123456erlanger.ch
                Article
                08-0311
                10.3201/eid1501.080311
                2660690
                19116041
                e2939b91-0b79-4d6e-a8e8-7f06a1998f33
                History
                Categories
                Perspective

                Infectious disease & Microbiology
                irrigation,rice farming,japanese encephalitis,pig rearing,vaccination program,perspective,emerging

                Comments

                Comment on this article