Using 2n/3n mixoploid mouse embryos produced by fusion of individual second polar bodies (PB2s) with individual blastomeres of 2-cell embryos, the dynamics of PB2 nuclei in the host blastomeres during mitosis were examined and the fate of the 3n cell line in the mixoploid embryos was followed. Most of the PB2 nuclei were synchronised with the cell cycle of the host blastomeres and all chromosomes were incorporated into a single mitotic spindle. The majority of the mixoploid embryos developed to blastocysts with 3n cells. In conceptuses at Day 11.5 and Day 18.5 of gestation, 3n cells were recognised in both of the embryonic/fetal and placental tissues. When green fluorescent protein (GFP)-transgenic mice were used as a donor of PB2, GFP-positive 3n cells were found in more than 40% of morulae and blastocysts, indicating that the PB2 genome can be reactivated during the pre-implantation stage. GFP-positive 3n cells were non-randomly allocated in trophectoderm in blastocysts. These findings may explain the production mechanism of 2n/3n mixoploid human embryos, that is, a PB2 is incorporated into one daughter blastomere during the early cleavage period.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.