4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TTK Protein Kinase promotes temozolomide resistance through inducing autophagy in glioblastoma

      research-article
      , , ,
      BMC Cancer
      BioMed Central
      TTK, Temozolomide, Glioblastoma, Autophagy, Resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Temozolomide (TMZ) resistance remains the main therapy challenge in patients with glioblastoma multiforme (GBM). TTK Protein Kinase (TTK) contributes to the radioresistance and chemoresistance in many malignancies. However, the role of TTK in the TMZ resistance of GBM cells remains unknown.

          Methods

          The expression of TTK was measured by western blot. The proliferation of GBM cells was assessed through MTT assay and clonogenic assay. Cell apoptosis was evaluated using western blot. LC3B puncta were detected using immunohistochemistry staining. The mouse xenograft model was used to investigate the role of TTK in vivo.

          Results

          Knockdown of TTK increased the sensitivity of GBM cells to TMZ treatment, while overexpression of TTK induced TMZ resistance. Two specific TTK inhibitors, BAY-1217389 and CFI-402257, significantly inhibited GBM cell proliferation and improved the growth-suppressive effect of TMZ. In addition, the knockdown of TTK decreased the autophagy levels of GBM cells. Inhibition of TTK using specific inhibitors could also suppress the autophagy process. Blocking autophagy using chloroquine (CQ) abolished the TMZ resistance function of TTK in GBM cells and in the mouse model.

          Conclusions

          We demonstrated that TTK promotes the TMZ resistance of GBM cells by inducing autophagy in vitro and in vivo. The use of a TTK inhibitor in combination with TMZ might help to overcome TMZ resistance and improve therapy efficiency in GBM.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12885-022-09899-1.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016

          The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors available and supersedes all previous reports in terms of completeness and accuracy. All rates are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.41 (Malignant AAAIR = 7.08, non-Malignant AAAIR = 16.33). This rate was higher in females compared to males (25.84 versus 20.82), Whites compared to Blacks (23.50 versus 23.34), and non-Hispanics compared to Hispanics (23.84 versus 21.28). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.6% of all tumors), and the most common non-malignant tumor was meningioma (37.6% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0–19 years), the incidence rate of all primary brain and other CNS tumors was 6.06. An estimated 86,010 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2019 (25,510 malignant and 60,490 non-malignant). There were 79,718 deaths attributed to malignant brain and other CNS tumors between 2012 and 2016. This represents an average annual mortality rate of 4.42. The five-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 35.8%, and the five-year relative survival rate following diagnosis of a non-malignant brain and other CNS tumors was 91.5%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Autophagy in major human diseases

            Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy‐related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders. This review provides an exhaustive overview of the contribution of autophagy to multiple pathological phenotypes in vivo , and discusses the therapeutic potential of autophagy modulation in disease prevention and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells.

              Autophagy is originally named as a process of protein recycling. It begins with sequestering cytoplasmic organelles in a membrane vacuole called autophagosome. Autophagosomes then fuse with lysosomes, where the materials inside are degraded and recycled. To date, however, little is known about the role of autophagy in cancer therapy. In this study, we present that temozolomide (TMZ), a new alkylating agent, inhibited the viability of malignant glioma cells in a dose-dependent manner and induced G2/M arrest. At a clinically achievable dose (100 microM), TMZ induced autophagy, but not apoptosis in malignant glioma cells. After the treatment with TMZ, microtubule-associated protein light-chain 3 (LC3), a mammalian homologue of Apg8p/Aut7p essential for amino-acid starvation-induced autophagy in yeast, was recruited on autophagosome membranes. When autophagy was prevented at an early stage by 3-methyladenine, a phosphatidylinositol 3-phosphate kinase inhibitor, not only the characteristic pattern of LC3 localization, but also the antitumor effect of TMZ was suppressed. On the other hand, bafilomycin A1, a specific inhibitor of vacuolar type H(+)-ATPase, that prevents autophagy at a late stage by inhibiting fusion between autophagosomes and lysosomes, sensitized tumor cells to TMZ by inducing apoptosis through activation of caspase-3 with mitochondrial and lysosomal membrane permeabilization, while LC3 localization pattern stayed the same. These results indicate that TMZ induces autophagy in malignant glioma cells. Application of an autophagy inhibitor that works after the association of LC3 with autophagosome membrane, such as bafilomycin A1, is expected to enhance the cytotoxicity of TMZ for malignant gliomas.
                Bookmark

                Author and article information

                Contributors
                ahwy_neurosurgery@fsyy.ustc.edu.cn
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                18 July 2022
                18 July 2022
                2022
                : 22
                : 786
                Affiliations
                GRID grid.59053.3a, ISNI 0000000121679639, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, , University of Science and Technology of China, ; 17 Lujiang Road, Hefei, 230001 Anhui China
                Article
                9899
                10.1186/s12885-022-09899-1
                9290216
                35850753
                e1b0a89c-082a-4cf8-8b02-5a27178215cc
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 15 February 2022
                : 13 July 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003995, Natural Science Foundation of Anhui Province;
                Award ID: 1708085QH174
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Oncology & Radiotherapy
                ttk,temozolomide,glioblastoma,autophagy,resistance
                Oncology & Radiotherapy
                ttk, temozolomide, glioblastoma, autophagy, resistance

                Comments

                Comment on this article