45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities

      , ,
      Nature Metabolism
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Endoplasmic reticulum stress: cell life and death decisions.

          C. Xu (2005)
          Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response, which is aimed initially at compensating for damage but can eventually trigger cell death if ER dysfunction is severe or prolonged. The mechanisms by which ER stress leads to cell death remain enigmatic, with multiple potential participants described but little clarity about which specific death effectors dominate in particular cellular contexts. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including hypoxia, ischemia/reperfusion injury, neurodegeneration, heart disease, and diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunological hallmarks of stromal cells in the tumour microenvironment.

            A dynamic and mutualistic interaction between tumour cells and the surrounding stroma promotes the initiation, progression, metastasis and chemoresistance of solid tumours. Far less understood is the relationship between the stroma and tumour-infiltrating leukocytes; however, emerging evidence suggests that the stromal compartment can shape antitumour immunity and responsiveness to immunotherapy. Thus, there is growing interest in elucidating the immunomodulatory roles of the stroma that evolve within the tumour microenvironment. In this Review, we discuss the evidence that stromal determinants interact with leukocytes and influence antitumour immunity, with emphasis on the immunological attributes of stromal cells that may foster their protumorigenic function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Acidic extracellular microenvironment and cancer

              Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
                Bookmark

                Author and article information

                Journal
                Nature Metabolism
                Nat Metab
                Springer Science and Business Media LLC
                2522-5812
                February 10 2020
                Article
                10.1038/s42255-020-0174-0
                32694690
                e068ea7a-cf2b-4b63-8105-0c7c3fcf8313
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article