8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two Approaches for Evaluating the Effects of Galangin on the Activities and mRNA Expression of Seven CYP450

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Galangin is a marker compound of honey and Alpinia officinarum Hance that exhibits great potential for anti-microbial, anti-diabetic, anti-obesity, anti-tumour and anti-inflammatory applications. Galangin is frequently consumed in combination with common clinical drugs. Here, we evaluated the effects of galangin on cytochrome P450 (CYP)-mediated metabolism, using two different approaches, to predict drug–drug interactions. Male Sprague Dawley rats were administered galangin daily for 8 weeks. A “cocktail-probes” approach was employed to evaluate the activities of different CYP450 enzymes. Blood samples of seven probe drugs were analysed using liquid chromatography-tandem mass spectrometry in positive and negative electrospray-ionisation modes. Pharmacokinetic parameters were calculated to identify statistical differences. CYP mRNA-expression levels were investigated in real-time quantitative polymerase chain reaction experiments. The galangin-treated group showed significantly decreased AUC 0–∞ and C max values for CYP1A2, and CYP2B3. The galangin-treated group showed significantly increased AUC 0–∞ and C max values for CYP2C13 and CYP3A1. No significant influences were observed in the pharmacokinetic profiles of CYP2C11, CYP2D4 and CYP2E1. The mRNA-expression results were consistent with the pharmacokinetic results. Thus, CYP450 enzyme activities may be altered by long-term galangin administration, suggesting galangin to be a promising candidate molecule for enhancing oral drug bioavailability and chemoprevention and reversing multidrug resistance.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Function and activation of NF-kappa B in the immune system.

          NF-kappa B is a ubiquitous transcription factor. Nevertheless, its properties seem to be most extensively exploited in cells of the immune system. Among these properties are NF-kappa B's rapid posttranslational activation in response to many pathogenic signals, its direct participation in cytoplasmic/nuclear signaling, and its potency to activate transcription of a great variety of genes encoding immunologically relevant proteins. In vertebrates, five distinct DNA binding subunits are currently known which might extensively heterodimerize, thereby forming complexes with distinct transcriptional activity, DNA sequence specificity, and cell type- and cell stage-specific distribution. The activity of DNA binding NF-kappa B dimers is tightly controlled by accessory proteins called I kappa B subunits of which there are also five different species currently known in vertebrates. I kappa B proteins inhibit DNA binding and prevent nuclear uptake of NF-kappa B complexes. An exception is the Bcl-3 protein which in addition can function as a transcription activating subunit in th nucleus. Other I kappa B proteins are rather involved in terminating NF-kappa B's activity in the nucleus. The intracellular events that lead to the inactivation of I kappa B, i.e. the activation of NF-kappa B, are complex. They involve phosphorylation and proteolytic reactions and seem to be controlled by the cells' redox status. Interference with the activation or activity of NF-kappa B may be beneficial in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, acute phase response, and radiation damage. The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring.

            Cytochrome P450 (CYP) 3A4 is the most abundant enzyme of CYPs in the liver and gut that metabolizes approximately 50% currently available drugs. A number of important drugs have been identified as substrates, inducers, and/or inhibitors of CYP3A4. The substrates of CYP3A4 considerably overlap with those of P-glycoprotein. Both CYP3A4 and P-glycoprotein are subject to inhibition and induction by a number of factors. Mechanism-based inhibition of CYP3A4 is characterized by NADPH-, time-, and concentration-dependent enzyme inactivation occurring when some xenobiotics or drugs are converted by CYPs to reactive metabolites. Such an inhibition of CYP3A4 is caused by chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. To date, the identified clinically important mechanism-based CYP3A4 inhibitors mainly include macrolide antibiotics (eg, clarithromycin and erythromycin), anti-HIV agents (eg, ritonavir and delavirdine), antidepressants (eg, fluoxetine and fluvoxamine), calcium channel blockers (eg, verapamil and diltiazem), steroids and their modulators (eg, gestodene and mifepristone), and several herbal and dietary components. The inactivation of CYP3A4 by drugs often causes unfavorable and long-lasting drug-drug interactions and probably fatal toxicity, depending on many factors associated with the enzyme, drugs, and the patients. Clinicians are encouraged to have a sound knowledge of drug-induced, mechanism-based CYP3A4 inhibition; take proper cautions, and perform close monitoring for possible drug interactions when using drugs that are mechanism-based CYP3A4 inhibitors. To minimize drug-drug interactions involving mechanism-based CYP3A4 inhibition, it is necessary to choose safe drug combination regimens, adjust drug dosages appropriately, and conduct therapeutic drug monitoring for drugs with narrow therapeutic indices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR).

              Several polyphenols have been shown to activate the aryl hydrocarbon receptor (AHR) in spite of the fact that they bind to the receptor with low affinity. The aim of this study was to investigate whether quercetin (QUE), resveratrol (RES), and curcumin (CUR) interfere with the metabolic degradation of the suggested endogenous AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ) and thereby indirectly activate the AHR. Using recombinant human enzyme, we confirmed earlier reported inhibitory effects of the polyphenols on cytochrome P4501A1 (CYP1A1) activity, and inhibition of metabolic clearance of FICZ was documented in FICZ-treated immortalized human keratinocytes (HaCaT). CYP1A1 activity was induced in HaCaT cells by all three compounds, and when they were added together with FICZ, a prolonged activation was observed after a dose-dependent inhibition period. The same pattern of responses was seen at the transcriptional level as determined with a CYP1A1 reporter assay in human liver hepatoma (HepG2) cells. To test the ability of the polyphenols to activate the AHR in the absence of FICZ, the cells were treated in medium, which in contrast to commercial batches of medium did not contain background levels of FICZ. Importantly, AHR activation was only observed in the commercial medium. Taken together, these findings suggest that QUE, RES, and CUR induce CYP1A1 in an indirect manner by inhibiting the metabolic turnover of FICZ. Humans are exposed to these compounds through the diet and nutritional supplements, and we propose that altered systemic levels of FICZ caused by such compounds may have physiological consequences.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                25 March 2019
                March 2019
                : 24
                : 6
                : 1171
                Affiliations
                [1 ]Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China; maling-shz@ 123456163.com (Y.-L.M.); zhaofeng-37@ 123456163.com (F.Z.); yinjintuo@ 123456163.com (J.-T.Y.); caijuanliang@ 123456126.com (C.-J.L.)
                [2 ]National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China; niuxl0327@ 123456163.com (X.-L.N.); 15930818866@ 123456126.com (Z.-H.Q.)
                Author notes
                [* ]Correspondence: zhanglantong@ 123456263.net ; Tel.: +86-0311-86266419
                Author information
                https://orcid.org/0000-0001-7752-6201
                Article
                molecules-24-01171
                10.3390/molecules24061171
                6470853
                30934565
                dc91c806-2721-4bee-8b87-5699f9ed5c2c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 March 2019
                : 22 March 2019
                Categories
                Article

                cyp450 enzyme,cocktail probe drug,rt-pcr,lc-ms/ms,galangin
                cyp450 enzyme, cocktail probe drug, rt-pcr, lc-ms/ms, galangin

                Comments

                Comment on this article