4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many species, including most flowering plants, are polyploid, possessing multiple genomes. During polyploidisation, fertility is preserved via the evolution of mechanisms to control the behaviour of these multiple genomes during meiosis. On the polyploidisation of wheat, the major meiotic gene ZIP4 duplicated and diverged, with the resulting new gene TaZIP4-B2 being inserted into chromosome 5B. Previous studies showed that this TaZIP4-B2 promotes pairing and synapsis between wheat homologous chromosomes, whilst suppressing crossover between related (homoeologous) chromosomes. Moreover, in wheat, the presence of TaZIP4-B2 preserves up to 50% of grain number. The present study exploits a ‘separation-of-function’ wheat Tazip4-B2 mutant named zip4-ph1d, in which the Tazip4-B2 copy still promotes correct pairing and synapsis between homologues (resulting in the same pollen profile and fertility normally found in wild type wheat), but which also allows crossover between the related chromosomes in wheat haploids of this mutant. This suggests an improved utility for the new zip4-ph1d mutant line during wheat breeding, compared to the previously described CRISPR Tazip4-B2 and ph1 mutant lines. The results also reveal that loss of suppression of homoeologous crossover between wheat chromosomes does not in itself reduce wheat fertility when promotion of homologous pairing and synapsis by TaZIP4-B2 is preserved.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Clustal W and Clustal X version 2.0.

          The Clustal W and Clustal X multiple sequence alignment programs have been completely rewritten in C++. This will facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems. The programs can be run on-line from the EBI web server: http://www.ebi.ac.uk/tools/clustalw2. The source code and executables for Windows, Linux and Macintosh computers are available from the EBI ftp site ftp://ftp.ebi.ac.uk/pub/software/clustalw2/
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core.

            The MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) is a free, one-stop web service for protein bioinformatic analysis. It currently offers 34 interconnected external and in-house tools, whose functionality covers sequence similarity searching, alignment construction, detection of sequence features, structure prediction, and sequence classification. This breadth has made the Toolkit an important resource for experimental biology and for teaching bioinformatic inquiry. Recently, we replaced the first version of the Toolkit, which was released in 2005 and had served around 2.5 million queries, with an entirely new version, focusing on improved features for the comprehensive analysis of proteins, as well as on promoting teaching. For instance, our popular remote homology detection server, HHpred, now allows pairwise comparison of two sequences or alignments and offers additional profile HMMs for several model organisms and domain databases. Here, we introduce the new version of our Toolkit and its application to the analysis of proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              JPred4: a protein secondary structure prediction server

              JPred4 (http://www.compbio.dundee.ac.uk/jpred4) is the latest version of the popular JPred protein secondary structure prediction server which provides predictions by the JNet algorithm, one of the most accurate methods for secondary structure prediction. In addition to protein secondary structure, JPred also makes predictions of solvent accessibility and coiled-coil regions. The JPred service runs up to 94 000 jobs per month and has carried out over 1.5 million predictions in total for users in 179 countries. The JPred4 web server has been re-implemented in the Bootstrap framework and JavaScript to improve its design, usability and accessibility from mobile devices. JPred4 features higher accuracy, with a blind three-state (α-helix, β-strand and coil) secondary structure prediction accuracy of 82.0% while solvent accessibility prediction accuracy has been raised to 90% for residues <5% accessible. Reporting of results is enhanced both on the website and through the optional email summaries and batch submission results. Predictions are now presented in SVG format with options to view full multiple sequence alignments with and without gaps and insertions. Finally, the help-pages have been updated and tool-tips added as well as step-by-step tutorials.
                Bookmark

                Author and article information

                Contributors
                Azahara-c.martin@jic.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 November 2021
                8 November 2021
                2021
                : 11
                : 21811
                Affiliations
                GRID grid.14830.3e, ISNI 0000 0001 2175 7246, Crop Genetics Department, , John Innes Centre, ; Colney, Norwich, NR4 7UH UK
                Article
                1379
                10.1038/s41598-021-01379-z
                8575954
                34750469
                dc52d3e9-3036-4336-882e-5d9ded16137c
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 September 2021
                : 27 October 2021
                Funding
                Funded by: UKRI- Biological and Biotechnology Research Council (BBSRC)
                Award ID: Designing Future Wheat’ (DFW) Institute Strategic Programme (BB/ P016855/1)
                Award ID: BB/R0077233/1
                Award ID: Designing Future Wheat’ (DFW) Institute Strategic Programme (BB/ P016855/1)
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                plant biotechnology,plant breeding,chromosomes
                Uncategorized
                plant biotechnology, plant breeding, chromosomes

                Comments

                Comment on this article