67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Broccoli Sprout Extract Containing Sulforaphane on Lipid Peroxidation and Helicobacter pylori Infection in the Gastric Mucosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims

          The aims of this study were to investigate whether a broccoli sprout extract containing sulforaphane (BSES) inhibited the Helicobacter pylori infection density and exerted an antioxidative effect on gastric mucosal damage.

          Methods

          The enrolled subjects were randomized in a double-blinded manner into three groups. Finally, 33 H. pylori (+) BSES treatment subjects (group A), 28 H. pylori (+) placebo subjects (group B), and 28 H. pylori (−) BSES treatment subjects (group C) were studied. H. pylori infection density was indirectly quantified by a 13C-urea breath test (UBT), and the ammonia concentration in gastric juice aspirates was measured through gastroscopic examination. Malondialdehyde (MDA), an oxidative damage biomarker, and reduced glutathione (GSH), an antioxidant biomarker, were measured in the gastric mucosa by an enzyme-linked immunosorbent assay.

          Results

          BSES treatment did not significantly affect the UBT values or ammonia concentration in group A (p=0.634 and p=0.505, respectively). BSES treatment did significantly reduce mucosal MDA concentrations in group A (p<0.05) and group C (p<0.001), whereas the gastric mucosal GSH concentrations did not differ before and after treatment in any of the groups.

          Conclusions

          BSES did not inhibit the H. pylori infection density. However, BSES prevented lipid peroxidation in the gastric mucosa and may play a cytoprotective role in H. pylori-induced gastritis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994.

          The Sydney System for the classification of gastritis emphasized the importance of combining topographical, morphological, and etiological information into a schema that would help to generate reproducible and clinically useful diagnoses. To reappraise the Sydney System 4 years after its introduction, a group of gastrointestinal pathologists from various parts of the world met in Houston, Texas, in September 1994. The aims of the workshop were (a) to establish an agreed terminology of gastritis; (b) to identify, define, and attempt to resolve some of the problems associated with the Sydney System. This article introduces the Sydney System as it was revised at the Houston Gastritis Workshop and represents the consensus of the participants. Overall, the principles and grading of the Sydney System were only slightly modified, the grading being aided by the provision of a visual analogue scale. The terminology of the final classification has been improved to emphasize the distinction between the atrophic and nonatrophic stomach; the names used for each entity were selected because they are generally acceptable to both pathologists and gastroenterologists. In addition to the main categories and atrophic and nonatrophic gastritis, the special or distinctive forms are described and their respective diagnostic criteria are provided. The article includes practical guidelines for optimal biopsy sampling of the stomach, for the use of the visual analogue scales for grading the histopathologic features, and for the formulation of a comprehensive standardized diagnosis. A glossary of gastritis-related terms as used in this article is provided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors.

            Gastric infection with Helicobacter pylori is a cosmopolitan problem, and is especially common in developing regions where there is also a high prevalence of gastric cancer. These infections are known to cause gastritis and peptic ulcers, and dramatically enhance the risk of gastric cancer. Eradication of this organism is an important medical goal that is complicated by the development of resistance to conventional antimicrobial agents and by the persistence of a low level reservoir of H. pylori within gastric epithelial cells. Moreover, economic and practical problems preclude widespread and intensive use of antibiotics in most developing regions. We have found that sulforaphane [(-)-1-isothiocyanato-(4R)-(methylsulfinyl)butane], an isothiocyanate abundant as its glucosinolate precursor in certain varieties of broccoli and broccoli sprouts, is a potent bacteriostatic agent against 3 reference strains and 45 clinical isolates of H. pylori [minimal inhibitory concentration (MIC) for 90% of the strains is
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens.

              Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10-100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at -50 degrees C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect against the risk of cancer as effectively as much larger quantities of mature vegetables of the same variety.
                Bookmark

                Author and article information

                Journal
                Gut Liver
                Gut Liver
                Gut and Liver
                Gut and Liver
                1976-2283
                2005-1212
                July 2015
                07 October 2014
                : 9
                : 4
                : 486-493
                Affiliations
                [* ]Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, Korea
                []Department of Surgery, Kyung Hee University College of Medicine, Seoul, Korea
                Author notes
                Correspondence to: Jae Young Jang, Department of Gastroenterology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea, Tel: +82-2-958-8200, Fax: +82-2-958-1848, E-mail: jyjang@ 123456khu.ac.kr
                Article
                gnl-09-486
                10.5009/gnl14040
                4477992
                25287166
                dc149b55-12a3-4999-8d52-2d031455b343
                Copyright © 2015 by The Korean Society of Gastroenterology, the Korean Society of Gastrointestinal Endoscopy, the Korean Society of Neurogastroenterology and Motility, Korean College of Helicobacter and Upper Gastrointestinal Research, Korean Association for the Study of Intestinal Diseases, the Korean Association for the Study of the Liver, Korean Pancreatobiliary Association, and Korean Society of Gastrointestinal Cancer.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 February 2014
                : 14 May 2014
                : 26 May 2014
                Categories
                Original Article

                Gastroenterology & Hepatology
                helicobacter pylori,sulforaphane,malondialde-hyde,glutathione
                Gastroenterology & Hepatology
                helicobacter pylori, sulforaphane, malondialde-hyde, glutathione

                Comments

                Comment on this article