25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional and neuromuscular changes induced via a low-cost, muscle-computer interface for telerehabilitation: A feasibility study in chronic stroke

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stroke is a leading cause of adult disability in the United States. High doses of repeated task-specific practice have shown promising results in restoring upper limb function in chronic stroke. However, it is currently challenging to provide such doses in clinical practice. At-home telerehabilitation supervised by a clinician is a potential solution to provide higher-dose interventions. However, telerehabilitation systems developed for repeated task-specific practice typically require a minimum level of active movement. Therefore, severely impaired people necessitate alternative therapeutic approaches. Measurement and feedback of electrical muscle activity via electromyography (EMG) have been previously implemented in the presence of minimal or no volitional movement to improve motor performance in people with stroke. Specifically, muscle neurofeedback training to reduce unintended co-contractions of the impaired hand may be a targeted intervention to improve motor control in severely impaired populations. Here, we present the preliminary results of a low-cost, portable EMG biofeedback system (Tele-REINVENT) for supervised and unsupervised upper limb telerehabilitation after stroke. We aimed to explore the feasibility of providing higher doses of repeated task-specific practice during at-home training. Therefore, we recruited 5 participants (age = 44–73 years) with chronic, severe impairment due to stroke (Fugl-Meyer = 19–40/66). They completed a 6-week home-based training program that reinforced activity of the wrist extensor muscles while avoiding coactivation of flexor muscles via computer games. We used EMG signals to quantify the contribution of two antagonistic muscles and provide biofeedback of individuated activity, defined as a ratio of extensor and flexor activity during movement attempt. Our data suggest that 30 1-h sessions over 6 weeks of at-home training with our Tele-REINVENT system is feasible and may improve individuated muscle activity as well as scores on standard clinical assessments (e.g., Fugl-Meyer Assessment, Action Research Arm Test, active wrist range of motion) for some individuals. Furthermore, tests of neuromuscular control suggest modest changes in the synchronization of electroencephalography (EEG) and EMG signals within the beta band (12–30 Hz). Finally, all participants showed high adherence to the training protocol and reported enjoying using the system. These preliminary results suggest that using low-cost technology for home-based telerehabilitation after severe chronic stroke is feasible and may be effective in improving motor control via feedback of individuated muscle activity.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment.

          To develop a 10-minute cognitive screening tool (Montreal Cognitive Assessment, MoCA) to assist first-line physicians in detection of mild cognitive impairment (MCI), a clinical state that often progresses to dementia. Validation study. A community clinic and an academic center. Ninety-four patients meeting MCI clinical criteria supported by psychometric measures, 93 patients with mild Alzheimer's disease (AD) (Mini-Mental State Examination (MMSE) score > or =17), and 90 healthy elderly controls (NC). The MoCA and MMSE were administered to all participants, and sensitivity and specificity of both measures were assessed for detection of MCI and mild AD. Using a cutoff score 26, the MMSE had a sensitivity of 18% to detect MCI, whereas the MoCA detected 90% of MCI subjects. In the mild AD group, the MMSE had a sensitivity of 78%, whereas the MoCA detected 100%. Specificity was excellent for both MMSE and MoCA (100% and 87%, respectively). MCI as an entity is evolving and somewhat controversial. The MoCA is a brief cognitive screening tool with high sensitivity and specificity for detecting MCI as currently conceptualized in patients performing in the normal range on the MMSE.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

            We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heart Disease and Stroke Statistics—2020 Update

              Circulation
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurogenom
                Front Neurogenom
                Front. Neuroergon.
                Frontiers in Neuroergonomics
                Frontiers Media S.A.
                2673-6195
                17 November 2022
                2022
                : 3
                : 1046695
                Affiliations
                [1] 1Department of Biomedical Engineering, University of Southern California , Los Angeles, CA, United States
                [2] 2Chan Division of Occupational Science and Occupational Therapy, University of Southern California , Los Angeles, CA, United States
                [3] 3Dornsife College of Letters, Arts, and Sciences, University of Southern California , Los Angeles, CA, United States
                [4] 4Stevens Neuroinformatics Institute, Department of Neurology, University of Southern California , Los Angeles, CA, United States
                Author notes

                Edited by: Serafeim Perdikis, University of Essex, United Kingdom

                Reviewed by: Catherine M. Sweeney-Reed, University Hospital Magdeburg, Germany; Xijun Wei, Southern Medical University, China

                *Correspondence: Octavio Marin-Pardo marinpar@ 123456usc.edu
                Sook-Lei Liew sliew@ 123456usc.edu

                This article was submitted to Neurotechnology and Systems Neuroergonomics, a section of the journal Frontiers in Neuroergonomics

                Article
                10.3389/fnrgo.2022.1046695
                10790881
                38235476
                da6d56ca-6b2d-4c19-9d47-41964119bb56
                Copyright © 2022 Marin-Pardo, Donnelly, Phanord, Wong, Pan and Liew.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 September 2022
                : 31 October 2022
                Page count
                Figures: 5, Tables: 4, Equations: 3, References: 65, Pages: 16, Words: 11316
                Categories
                Neuroergonomics
                Original Research

                biofeedback,telerehabilitation,electromyography,stroke,human-computer interface

                Comments

                Comment on this article