5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Brain Connectivity of Language Functions in Children Revealed by EEG and MEG: A Systematic Review

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of language functions is of great interest to neuroscientists, as these functions are among the fundamental capacities of human cognition. For many years, researchers aimed at identifying cerebral correlates of language abilities. More recently, the development of new data analysis tools has generated a shift toward the investigation of complex cerebral networks. In 2015, Weiss-Croft and Baldeweg published a very interesting systematic review on the development of functional language networks, explored through the use of functional magnetic resonance imaging (fMRI). Compared to fMRI and because of their excellent temporal resolution, magnetoencephalography (MEG) and electroencephalography (EEG) provide different and important information on brain activity. Both therefore constitute crucial neuroimaging techniques for the investigation of the maturation of functional language brain networks. The main objective of this systematic review is to provide a state of knowledge on the investigation of language-related cerebral networks in children, through the use of EEG and MEG, as well as a detailed portrait of relevant MEG and EEG data analysis methods used in that specific research context. To do so, we have summarized the results and systematically compared the methodological approach of 24 peer-reviewed EEG or MEG scientific studies that included healthy children and children with or at high risk of language disabilities, from birth up to 18 years of age. All included studies employed functional and effective connectivity measures, such as coherence, phase locking value, and Phase Slope Index, and did so using different experimental paradigms (e.g., at rest or during language-related tasks). This review will provide more insight into the use of EEG and MEG for the study of language networks in children, contribute to the current state of knowledge on the developmental path of functional connectivity in language networks during childhood and adolescence, and finally allow future studies to choose the most appropriate type of connectivity analysis.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources.

          To address the problem of volume conduction and active reference electrodes in the assessment of functional connectivity, we propose a novel measure to quantify phase synchronization, the phase lag index (PLI), and compare its performance to the well-known phase coherence (PC), and to the imaginary component of coherency (IC). The PLI is a measure of the asymmetry of the distribution of phase differences between two signals. The performance of PLI, PC, and IC was examined in (i) a model of 64 globally coupled oscillators, (ii) an EEG with an absence seizure, (iii) an EEG data set of 15 Alzheimer patients and 13 control subjects, and (iv) two MEG data sets. PLI and PC were more sensitive than IC to increasing levels of true synchronization in the model. PC and IC were influenced stronger than PLI by spurious correlations because of common sources. All measures detected changes in synchronization during the absence seizure. In contrast to PC, PLI and IC were barely changed by the choice of different montages. PLI and IC were superior to PC in detecting changes in beta band connectivity in AD patients. Finally, PLI and IC revealed a different spatial pattern of functional connectivity in MEG data than PC. The PLI performed at least as well as the PC in detecting true changes in synchronization in model and real data but, at the same token and like-wise the IC, it was much less affected by the influence of common sources and active reference electrodes. Copyright 2007 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Partial directed coherence: a new concept in neural structure determination.

            This paper introduces a new frequency-domain approach to describe the relationships (direction of information flow) between multivariate time series based on the decomposition of multivariate partial coherences computed from multivariate autoregressive models. We discuss its application and compare its performance to other approaches to the problem of determining neural structure relations from the simultaneous measurement of neural electrophysiological signals. The new concept is shown to reflect a frequency-domain representation of the concept of Granger causality.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Measurement of Linear Dependence and Feedback between Multiple Time Series

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                12 March 2020
                2020
                : 14
                : 62
                Affiliations
                [1] 1Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center , Montréal, QC, Canada
                [2] 2Department of Psychology, Université de Montréal , Montréal, QC, Canada
                Author notes

                Edited by: Claude Alain, Rotman Research Institute (RRI), Canada

                Reviewed by: Jascha Ruesseler, University of Bamberg, Germany; Sam Doesburg, Simon Fraser University, Canada

                *Correspondence: Isabelle Gaudet isabelle.gaudet.3@ 123456umontreal.ca

                This article was submitted to Speech and Language, a section of the journal Frontiers in Human Neuroscience

                Article
                10.3389/fnhum.2020.00062
                7080982
                32226367
                d6295f61-6828-4148-a9f3-672b554dc030
                Copyright © 2020 Gaudet, Hüsser, Vannasing and Gallagher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 October 2019
                : 10 February 2020
                Page count
                Figures: 5, Tables: 6, Equations: 0, References: 91, Pages: 20, Words: 14723
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Categories
                Human Neuroscience
                Systematic Review

                Neurosciences
                functional connectivity,cerebral networks,language,language development,children,eeg,meg,connectivity analysis

                Comments

                Comment on this article