In mammals, chicken-type (c-type) lysozymes are part of the innate immune system, killing bacteria by degrading peptidoglycan in their cell walls. Many of the studies on the evolution of c-type lysozymes have focused on its new digestive function, including the duplicated stomach lysozymes in ruminants. Similarly, in bats, gene duplications and subsequent adaptive evolution of c-type lysozyme have been reported in a clade of insectivorous species, which might have been driven by the need to digest chitin. However, no studies on the evolution of c-type lysozyme have been carried out in the second largest and dietary diverse bat family Phyllostomidae, which includes insectivorous, frugivorous, nectarivorous and sanguivorous species. Here, we sequenced and analyzed c-type lysozyme genes from four phyllostomid bats, the common vampire bat, the white-winged vampire bat, the lesser long-nosed bat and the big fruit-eating bat. Only a single lysozyme gene was identified in each of these species. Evidence for positive selection on mature lysozyme was found on lineages leading to vampire bats, but not other bats with single copy lysozyme genes. Moreover, several amino acid substitutions found in mature lysozymes from the sanguivorous clade are predicted to have functional impacts, adding further evidence for the adaptive evolution of lysozyme in vampire bats. Functional adaptation of vampire bat lysozymes could be associated with anti-microbial defense, possibly driven by the specialized sanguivory-related habits of vampire bats.