A chief goal of artificial intelligence is to build machines that think like people. Yet it has been argued that deep neural network architectures fail to accomplish this. Researchers have asserted these models’ limitations in the domains of causal reasoning, intuitive physics and intuitive psychology. Yet recent advancements, namely the rise of large language models, particularly those designed for visual processing, have rekindled interest in the potential to emulate human-like cognitive abilities. This paper evaluates the current state of vision-based large language models in the domains of intuitive physics, causal reasoning and intuitive psychology. Through a series of controlled experiments, we investigate the extent to which these modern models grasp complex physical interactions, causal relationships and intuitive understanding of others’ preferences. Our findings reveal that, while some of these models demonstrate a notable proficiency in processing and interpreting visual data, they still fall short of human capabilities in these areas. Our results emphasize the need for integrating more robust mechanisms for understanding causality, physical dynamics and social cognition into modern-day, vision-based language models, and point out the importance of cognitively inspired benchmarks.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.