1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concordance between Preoperative mpMRI and Pathological Stage and Its Influence on Nerve-Sparing Surgery in Patients with High-Risk Prostate Cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: We aimed to determine the concordance between the radiologic stage (rT), using multiparametric magnetic resonance imaging (mpMRI), and pathologic stage (pT) in patients with high-risk prostate cancer and its influence on nerve-sparing surgery compared to the use of the intraoperative frozen section technique (IFST). Methods: The concordance between rT and pT and the rates of nerve-sparing surgery and positive surgical margin were assessed for patients with high-risk prostate cancer who underwent radical prostatectomy. Results: The concordance between the rT and pT stages was shown in 66.4% (n = 77) of patients with clinical high-risk prostate cancer. The detection of patients with extraprostatic disease (≥pT3) by preoperative mpMRI showed a sensitivity, negative predictive value and accuracy of 65.1%, 51.7% and 67.5%. In addition to the suspicion of extraprostatic disease in mpMRI (≥rT3), 84.5% (n = 56) of patients with ≥rT3 underwent primary nerve-sparing surgery with IFST, resulting in 94.7% (n = 54) of men with at least unilateral nerve-sparing surgery after secondary resection with a positive surgical margin rate related to an IFST of 1.8% (n = 1). Conclusion: Patients with rT3 should not be immediately excluded from nerve-sparing surgery, as by using IFST some of these patients can safely undergo nerve-sparing surgery.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics, 2012.

          Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent.

            To present a summary of the 2016 version of the European Association of Urology (EAU) - European Society for Radiotherapy & Oncology (ESTRO) - International Society of Geriatric Oncology (SIOG) Guidelines on screening, diagnosis, and local treatment with curative intent of clinically localised prostate cancer (PCa).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer.

              Interstitial radiation (implant) therapy is used to treat clinically localized adenocarcinoma of the prostate, but how it compares with other treatments is not known. To estimate control of prostate-specific antigen (PSA) after radical prostatectomy (RP), external beam radiation (RT), or implant with or without neoadjuvant androgen deprivation therapy in patients with clinically localized prostate cancer. Retrospective cohort study of outcome data compared using Cox regression multivariable analyses. A total of 1872 men treated between January 1989 and October 1997 with an RP (n = 888) or implant with or without neoadjuvant androgen deprivation therapy (n = 218) at the Hospital of the University of Pennsylvania, Philadelphia, or RT (n = 766) at the Joint Center for Radiation Therapy, Boston, Mass, were enrolled. Actuarial freedom from PSA failure (defined as PSA outcome). The relative risk (RR) of PSA failure in low-risk patients (stage T1c, T2a and PSA level 10 and 20 ng/mL or Gleason score > or =8) treated with implant compared with RP were 3.1 (95% CI, 1.5-6.1) and 3.0 (95% CI, 1.8-5.0), respectively. The addition of androgen deprivation to implant therapy did not improve PSA outcome in high-risk patients but resulted in a PSA outcome that was not statistically different compared with the results obtained using RP or RT in intermediate-risk patients. These results were unchanged when patients were stratified using the traditional rankings of biopsy Gleason scores of 2 through 4 vs 5 through 6 vs 7 vs 8 through 10. Low-risk patients had estimates of 5-year PSA outcome after treatment with RP, RT, or implant with or without neoadjuvant androgen deprivation that were not statistically different, whereas intermediate- and high-risk patients treated with RP or RT did better then those treated by implant. Prospective randomized trials are needed to verify these findings.
                Bookmark

                Author and article information

                Journal
                Current Oncology
                Current Oncology
                MDPI AG
                1718-7729
                April 2022
                March 28 2022
                : 29
                : 4
                : 2385-2394
                Article
                10.3390/curroncol29040193
                d0a2bf05-b624-41f1-8e1e-1748b92dd81f
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article