2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heterologous boosting with third dose of coronavirus disease recombinant subunit vaccine increases neutralizing antibodies and T cell immunity against different severe acute respiratory syndrome coronavirus 2 variants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Waned vaccine-induced immunity and emerging severe acute respiratory syndrome coronavirus 2 variants with potential for immune escape pose a major threat to the coronavirus disease (COVID-19) pandemic. Here, we showed that humoral immunity components, including anti-S + N, anti-RBD IgG, and neutralizing antibodies (NAbs), gradually waned and decreased the neutralizing capacity against emerging Omicron variants at 3 and 6 months after two inactivated COVID-19 vaccinations. We evaluated two boosting strategies with either a third dose of inactivated vaccine (homologous, I-I-I) or a recombinant subunit vaccine (heterologous, I-I-S). Both strategies induced the production of high levels of NAbs with a broad neutralizing capacity and longer retention. Interestingly, I-I-S induced 3.5-fold to 6.8-fold higher NAb titres than I-I-I, with a broader neutralizing capacity against six variants of concern, including Omicron. Further immunological analysis revealed that the two immunization strategies differ considerably, not only in the magnitude of total NAbs produced, but also in the composite pattern of NAbs and the population of virus-specific CD4+ T cells produced. Additionally, in some cases, heterologous boosted immunity induced the production of more effective epitopes than natural infection. The level of I-I-S-induced NAbs decreased to 48% and 18% at 1 and 3 months after booster vaccination, respectively. Overall, our data provide important evidence for vaccination strategies based on available vaccines and may help guide future global vaccination plans.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months

          Background Despite high vaccine coverage and effectiveness, the incidence of symptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been increasing in Israel. Whether the increasing incidence of infection is due to waning immunity after the receipt of two doses of the BNT162b2 vaccine is unclear. Methods We conducted a 6-month longitudinal prospective study involving vaccinated health care workers who were tested monthly for the presence of anti-spike IgG and neutralizing antibodies. Linear mixed models were used to assess the dynamics of antibody levels and to determine predictors of antibody levels at 6 months. Results The study included 4868 participants, with 3808 being included in the linear mixed-model analyses. The level of IgG antibodies decreased at a consistent rate, whereas the neutralizing antibody level decreased rapidly for the first 3 months with a relatively slow decrease thereafter. Although IgG antibody levels were highly correlated with neutralizing antibody titers (Spearman’s rank correlation between 0.68 and 0.75), the regression relationship between the IgG and neutralizing antibody levels depended on the time since receipt of the second vaccine dose. Six months after receipt of the second dose, neutralizing antibody titers were substantially lower among men than among women (ratio of means, 0.64; 95% confidence interval [CI], 0.55 to 0.75), lower among persons 65 years of age or older than among those 18 to less than 45 years of age (ratio of means, 0.58; 95% CI, 0.48 to 0.70), and lower among participants with immunosuppression than among those without immunosuppression (ratio of means, 0.30; 95% CI, 0.20 to 0.46). Conclusions Six months after receipt of the second dose of the BNT162b2 vaccine, humoral response was substantially decreased, especially among men, among persons 65 years of age or older, and among persons with immunosuppression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months

            Background BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine encoding a prefusion-stabilized, membrane-anchored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length spike protein. BNT162b2 is highly efficacious against coronavirus disease 2019 (Covid-19) and is currently approved, conditionally approved, or authorized for emergency use worldwide. At the time of initial authorization, data beyond 2 months after vaccination were unavailable. Methods In an ongoing, placebo-controlled, observer-blinded, multinational, pivotal efficacy trial, we randomly assigned 44,165 participants 16 years of age or older and 2264 participants 12 to 15 years of age to receive two 30-μg doses, at 21 days apart, of BNT162b2 or placebo. The trial end points were vaccine efficacy against laboratory-confirmed Covid-19 and safety, which were both evaluated through 6 months after vaccination. Results BNT162b2 continued to be safe and have an acceptable adverse-event profile. Few participants had adverse events leading to withdrawal from the trial. Vaccine efficacy against Covid-19 was 91.3% (95% confidence interval [CI], 89.0 to 93.2) through 6 months of follow-up among the participants without evidence of previous SARS-CoV-2 infection who could be evaluated. There was a gradual decline in vaccine efficacy. Vaccine efficacy of 86 to 100% was seen across countries and in populations with diverse ages, sexes, race or ethnic groups, and risk factors for Covid-19 among participants without evidence of previous infection with SARS-CoV-2. Vaccine efficacy against severe disease was 96.7% (95% CI, 80.3 to 99.9). In South Africa, where the SARS-CoV-2 variant of concern B.1.351 (or beta) was predominant, a vaccine efficacy of 100% (95% CI, 53.5 to 100) was observed. Conclusions Through 6 months of follow-up and despite a gradual decline in vaccine efficacy, BNT162b2 had a favorable safety profile and was highly efficacious in preventing Covid-19. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728 .)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19

              To the Editor: Interim results from a phase 3 trial of the Moderna mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine indicated 94% efficacy in preventing coronavirus disease 2019 (Covid-19). 1 The durability of protection is currently unknown. We describe mRNA1273-elicited binding and neutralizing antibodies in 33 healthy adult participants in an ongoing phase 1 trial, 2-4 stratified according to age, at 180 days after the second dose of 100 μg (day 209). Antibody activity remained high in all age groups at day 209. Binding antibodies, measured by means of an enzyme-linked immunosorbent assay against SARS-CoV-2 spike receptor–binding domain, 2 had geometric mean end-point titers (GMTs) of 92,451 (95% confidence interval [CI], 57,148 to 149,562) in participants 18 to 55 years of age, 62,424 (95% CI, 36,765 to 105,990) in those 56 to 70 years of age, and 49,373 (95% CI, 25,171 to 96,849) in those 71 years of age or older. Nearly all participants had detectable activity in a pseudovirus neutralization assay, 2 with 50% inhibitory dilution (ID50) GMTs of 80 (95% CI, 40 to 135), 57 (95% CI, 30 to 106), and 59 (95% CI, 29 to 121), respectively. On the more sensitive live-virus focus-reduction neutralization mNeonGreen test, 4 all the participants had detectable activity, with ID50 GMTs of 361 (95% CI, 258 to 504), 171 (95% CI, 95 to 307), and 131 (95% CI, 69 to 251), respectively; these GMTs were lower in participants 56 to 70 years of age (P=0.03) and in those 71 years of age or older (P=0.005) than in those 18 to 55 years of age (Figure 1; also see the Supplementary Appendix, available with the full text of this letter at NEJM.org). The estimated half-life of binding antibodies after day 43 for all the participants was 52 days (95% CI, 46 to 58) calculated with the use of an exponential decay model, which assumes a steady decay rate over time, and 109 days (95% CI, 92 to 136) calculated with the use of a power-law model (at day 119), which assumes that decay rates decrease over time. The neutralizing antibody half-life estimates in the two models were 69 days (95% CI, 61 to 76) and 173 days (95% CI, 144 to 225) for pseudovirus neutralization and 66 days (95% CI, 59 to 72) and 182 days (95% CI, 153 to 254) for live-virus neutralization. As measured by ΔAICc (change in Akaike information criterion, corrected for small sample size), the best fit for binding and neutralization were the power-law and exponential decay models, respectively (see the Supplementary Appendix). These results are consistent with published observations of convalescent patients with Covid-19 through 8 months after symptom onset. 5 Although the antibody titers and assays that best correlate with vaccine efficacy are not currently known, antibodies that were elicited by mRNA-1273 persisted through 6 months after the second dose, as detected by three distinct serologic assays. Ongoing studies are monitoring immune responses beyond 6 months as well as determining the effect of a booster dose to extend the duration and breadth of activity against emerging viral variants. Our data show antibody persistence and thus support the use of this vaccine in addressing the Covid-19 pandemic.
                Bookmark

                Author and article information

                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Taylor & Francis
                2222-1751
                15 March 2022
                2022
                15 March 2022
                : 11
                : 1
                : 829-840
                Affiliations
                [a ]Department of Infectious Disease, Respiratory and Critical Care Medicine, Guangzhou First People’s Hospital , Guangzhou Medical University , Guangzhou, People’s Republic of China
                [b ]State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University , Guangzhou, People’s Republic of China
                [c ]Guangzhou Laboratory, Bioland , Guangzhou, People’s Republic of China
                [d ]National Institutes for Food and Drug Control , NHC Key Laboratory of Research on Quality and Standardization of Biotech Products & NMPA Key Laboratory for Quality Research and Evaluation of Biological Products Beijing, People’s Republic of China
                Author notes
                [CONTACT ] Miao Xu xumiao@ 123456nifdc.org.cn National Institutes for Food and Drug Control , NHC Key Laboratory of Research on Quality and Standardization of Biotech Products & NMPA Key Laboratory for Quality Research and Evaluation of Biological Products Beijing, People’s Republic of China; Xiaoyun Yang Xiaoyun0775@ 123456163.com State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou Medical University , Guangzhou, People’s Republic of China, Guangzhou Laboratory, Bioland, Guangzhou, People’s Republic of China; WeiJin Huang huangweijin@ 123456nifdc.org.cn National Institutes for Food and Drug Control , NHC Key Laboratory of Research on Quality and Standardization of Biotech Products & NMPA Key Laboratory for Quality Research and Evaluation of Biological Products Beijing, People’s Republic of China; Zhongfang Wang State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou Medical University , Guangzhou, People’s Republic of China, Guangzhou Laboratory, Bioland, Guangzhou, People’s Republic of China.
                [#]

                These authors contributed equally to this work

                Supplemental data for this article can be accessed https://doi.org/10.1080/22221751.2022.2048969

                Article
                2048969
                10.1080/22221751.2022.2048969
                8928863
                35230230
                cff7face-65b3-4e87-ada9-1013ea43d9a1
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 23, Pages: 12
                Categories
                Coronaviruses
                Research Article

                covid-19 vaccine,prime-boost strategy,neutralizing antibody,t cell response,heterologous boosting,subunit vaccine,inactivated vaccine

                Comments

                Comment on this article