7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c

      , , , , , ,
      Biophysical Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly (13)C,(15)N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy.

          Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death mostly by apoptosis is crucially involved in the regulation of tumor formation and also critically determines treatment response. Killing of tumor cells by most anticancer strategies currently used in clinical oncology, for example, chemotherapy, gamma-irradiation, suicide gene therapy or immunotherapy, has been linked to activation of apoptosis signal transduction pathways in cancer cells such as the intrinsic and/or extrinsic pathway. Thus, failure to undergo apoptosis may result in treatment resistance. Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases.

            The enzymatic determination of hydrogen peroxide can be accomplished with high sensitivity and specificity using N-acetyl-3, 7-dihydroxyphenoxazine (Amplex Red), a highly sensitive and chemically stable fluorogenic probe for the enzymatic determination of H2O2. Enzyme-catalyzed oxidation of Amplex Red, which is a colorless and nonfluorescent derivative of dihydroresorufin, produces highly fluorescent resorufin, which has an excitation maximum at 563 nm and emission maximum at 587 nm. The reaction stoichiometry of Amplex Red and H2O2 was determined to be 1:1. This probe allows detection of 5 pmol H2O2 in a 96-well fluorescence microplate assay. When applied to the measurement of NADPH oxidase activation, the Amplex Red assay can detect H2O2 release from as few as 2000 phorbol myristate acetate-stimulated neutrophils with a sensitivity 5- to 20-fold greater than that attained in the scopoletin assay under the same experimental conditions. Furthermore, the oxidase-catalyzed assay using Amplex Red results in an increase in fluorescence on oxidation rather than a decrease in fluorescence as in the scopoletin assay. In comparison with other fluorometric and spectrophotometric assays for the detection of monoamine oxidase and glucose oxidase, this probe is also found to be more sensitive. Given its high sensitivity and specificity, Amplex Red should have a broad application for the measurement of H2O2 in a variety of oxidase-mediated reactions and very low levels of H2O2 in food, environmental waters, and consumer products. Copyright 1997 Academic Press.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heteronuclear decoupling in rotating solids

                Bookmark

                Author and article information

                Journal
                Biophysical Journal
                Biophysical Journal
                Elsevier BV
                00063495
                November 2015
                November 2015
                : 109
                : 9
                : 1873-1884
                Article
                10.1016/j.bpj.2015.09.016
                4643272
                26536264
                ccf3bb2d-0243-4a8e-9381-f4ae4cb1a969
                © 2015
                History

                Comments

                Comment on this article