18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SCN5A Variants: Association With Cardiac Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The SCN5A gene encodes the alpha subunit of the main cardiac sodium channel Na v1.5. This channel predominates inward sodium current (INa) and plays a critical role in regulation of cardiac electrophysiological function. Since 1995, SCN5A variants have been found to be causatively associated with Brugada syndrome, long QT syndrome, cardiac conduction system dysfunction, dilated cardiomyopathy, etc. Previous genetic, electrophysiological, and molecular studies have identified the arrhythmic and cardiac structural characteristics induced by SCN5A variants. However, due to the variation of disease manifestations and genetic background, impact of environmental factors, as well as the presence of mixed phenotypes, the detailed and individualized physiological mechanisms in various SCN5A-related syndromes are not fully elucidated. This review summarizes the current knowledge of SCN5A genetic variations in different SCN5A-related cardiac disorders and the newly developed therapy strategies potentially useful to prevent and treat these disorders in clinical setting.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome.

          Long QT syndrome (LQT) is an inherited disorder that causes sudden death from cardiac arrhythmias, specifically torsade de pointes and ventricular fibrillation. We previously mapped three LQT loci: LQT1 on chromosome 11p15.5, LQT2 on 7q35-36, and LQT3 on 3p21-24. Here we report genetic linkage between LQT3 and polymorphisms within SCN5A, the cardiac sodium channel gene. Single strand conformation polymorphism and DNA sequence analyses reveal identical intragenic deletions of SCN5A in affected members of two unrelated LQT families. The deleted sequences reside in a region that is important for channel inactivation. These data suggest that mutations in SCN5A cause chromosome 3-linked LQT and indicate a likely cellular mechanism for this disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test.

            Long QT syndrome (LQTS) is a potentially lethal, highly treatable cardiac channelopathy for which genetic testing has matured from discovery to translation and now clinical implementation. Here we examine the spectrum and prevalence of mutations found in the first 2,500 unrelated cases referred for the FAMILION LQTS clinical genetic test. Retrospective analysis of the first 2,500 cases (1,515 female patients, average age at testing 23 +/- 17 years, range 0 to 90 years) scanned for mutations in 5 of the LQTS-susceptibility genes: KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6). Overall, 903 referral cases (36%) hosted a possible LQTS-causing mutation that was absent in >2,600 reference alleles; 821 (91%) of the mutation-positive cases had single genotypes, whereas the remaining 82 patients (9%) had >1 mutation in > or =1 gene, including 52 cases that were compound heterozygous with mutations in >1 gene. Of the 562 distinct mutations, 394 (70%) were missense, 428 (76%) were seen once, and 336 (60%) are novel, including 92 of 199 in KCNQ1, 159 of 226 in KCNH2, and 70 of 110 in SCN5A. This cohort increases the publicly available compendium of putative LQTS-associated mutations by >50%, and approximately one-third of the most recently detected mutations continue to be novel. Although control population data suggest that the great majority of these mutations are pathogenic, expert interpretation of genetic test results will remain critical for effective clinical use of LQTS genetic test results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing.

              The purpose of this study was to determine the spectrum and prevalence of cardiac channel mutations among a large cohort of consecutive, unrelated patients referred for long QT syndrome (LQTS) genetic testing. Congenital LQTS is a primary cardiac channelopathy. More than 300 mutations have been identified in five genes encoding key ion channel subunits. Until the recent release of the commercial clinical genetic test, LQTS genetic testing had been performed in research laboratories during the past decade. A cardiac channel gene screen for LQTS-causing mutations in KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6) was performed for 541 consecutive, unrelated patients (358 females, average age at diagnosis 24 +/- 16 years, average QTc 482 +/- 57 ms) referred to Mayo Clinic's Sudden Death Genomics Laboratory for LQTS genetic testing between August 1997 and July 2004. A comprehensive open reading frame and splice site analysis of the 60 protein-encoding exons was conducted using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing. Overall, 211 putative pathogenic mutations in KCNQ1 (88), KCNH2 (89), SCN5A (32), KCNE1 (1), and KCNE2 (1) were found in 272 unrelated patients (50%). Among the genotype positive patients (N = 272), 243 had single pathogenic mutations (LQT1: n = 120 patients; LQT2: n = 93; LQT3: n = 26; LQT5: n = 3; LQT6: n = 1), and 29 patients (10% of genotype-positive patients and 5% overall) had two LQTS-causing mutations. The majority of mutations were missense mutations (154/210 [73%]), singletons (identified in only a single unrelated patient: 165/210 [79%]), and novel (125/211 [59%]). None of the mutations identified were seen in more than 1,500 reference alleles. Those patients harboring multiple mutations were younger at diagnosis (15 +/- 11 years vs 24 +/- 16 years, P = .003). In this comprehensive cardiac channel gene screen of the largest cohort of consecutive, unrelated patients referred for LQTS genetic testing, half of the patients had an identifiable mutation. The majority of mutations continue to represent novel singletons that expand the published compendium of LQTS-causing mutations by 35%. These observations should facilitate diagnostic interpretation of the clinical genetic test for LQTS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                09 October 2018
                2018
                : 9
                : 1372
                Affiliations
                [1] 1Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University , Shanghai, China
                [2] 2Department of Urology, Shanghai Tenth People's Hospital, Tongji University , Shanghai, China
                [3] 3Department of Cardiology, The Affiliated Hospital of Jining Medical University , Jining, China
                [4] 4Department of Cardiology, Institute of Biomedical Science, Fudan University , Shanghai, China
                Author notes

                Edited by: Jiashin Wu, University of South Florida, United States

                Reviewed by: Dan Hu, Renmin Hospital, Wuhan University, China; Flavien Charpentier, INSERM U1087 L'unité de Recherche de l'Institut du Thorax, France

                *Correspondence: Aijun Sun sun.aijun@ 123456zs-hospital.sh.cn

                This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01372
                6191725
                30364184
                c96d3820-b1c2-4bc2-a9ce-6671e5fcb026
                Copyright © 2018 Li, Yin, Shen, Hu, Ge and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 June 2018
                : 10 September 2018
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 133, Pages: 13, Words: 11062
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Physiology
                Review

                Anatomy & Physiology
                scn5a,nav1.5,cardiac disorders,cardiac sodium channelopathy,therapeutic potential

                Comments

                Comment on this article