72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta

      research-article
      1 , 1 , 2 , 1 ,
      EvoDevo
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stem cells have a critical role during adult growth and regeneration. Germline stem cells are specialized stem cells that produce gametes during sexual reproduction. Capitella teleta (formerly Capitella sp. I) is a polychaete annelid that reproduces sexually, exhibits adult growth and regeneration, and thus, is a good model to study the relationship between somatic and germline stem cells.

          Results

          We characterize expression of the two C. teleta orthologs of piwi, genes with roles in germline development in diverse organisms. Ct-piwi1 and Ct-piwi2 are expressed throughout the life cycle in a dynamic pattern that includes both somatic and germline cells, and show nearly identical expression patterns at all stages examined. Both genes are broadly expressed during embryonic and larval development, gradually becoming restricted to putative primordial germ cells (PGCs) and the posterior growth zone. In juveniles, Ct-piwi1 is expressed in the presumptive gonads, and in reproductive adults, it is detected in gonads and the posterior growth zone. In addition, Ct-piwi1 is expressed in a population of putative PGCs that persist in sexually mature adults, likely in a stem cell niche. Ct-piwi1 is expressed in regenerating tissue, and once segments differentiate, it becomes most prominent in the posterior growth zone and immature oocytes in regenerating ovaries of regenerating segments.

          Conclusions

          In C. teleta, piwi genes may have retained an ancestral role as genetic regulators of both somatic and germline stem cells. It is likely that piwi genes, and associated stem cell co-regulators, became restricted to the germline in some taxa during the course of evolution.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of germ cell specification across the metazoans: epigenesis and preformation.

            Germ cells play a unique role in gamete production, heredity and evolution. Therefore, to understand the mechanisms that specify germ cells is a central challenge in developmental and evolutionary biology. Data from model organisms show that germ cells can be specified either by maternally inherited determinants (preformation) or by inductive signals (epigenesis). Here we review existing data on 28 metazoan phyla, which indicate that although preformation is seen in most model organisms, it is actually the less prevalent mode of germ cell specification, and that epigenetic germ cell specification may be ancestral to the Metazoa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome.

              In Drosophila, Piwi (P-element-induced wimpy testis), which encodes a protein of the Argonaute family, is essential for germ stem cell self-renewal. Piwi has recently been shown to be a nuclear protein involved in gene silencing of retrotransposons and controlling their mobilization in the male germline. However, little is known about the molecular mechanisms of Piwi-dependent gene silencing. Here we show that endogenous Piwi immunopurified from ovary specifically associates with small RNAs of 25-29 nucleotides in length. Piwi-associated small RNAs were identified by cloning and sequencing as repeat-associated small interfering RNAs (rasiRNAs) derived from repetitive regions, such as retrotransposon and heterochromatic regions, in the Drosophila genome. Northern blot analyses revealed that in vivo Piwi does not associate with microRNAs (miRNAs) and that guide siRNA was not loaded onto Piwi when siRNA duplex was added to ovary lysate. In vitro, recombinant Piwi exhibits target RNA cleavage activity. These data together imply that Piwi functions in nuclear RNA silencing as Slicer by associating specifically with rasiRNAs originating from repetitive targets.
                Bookmark

                Author and article information

                Journal
                EvoDevo
                EvoDevo
                BioMed Central
                2041-9139
                2011
                5 May 2011
                : 2
                : 10
                Affiliations
                [1 ]Kewalo Marine Laboratory, PBRC/University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA
                [2 ]Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
                Article
                2041-9139-2-10
                10.1186/2041-9139-2-10
                3113731
                21545709
                c87ffe5c-38fb-4e25-aa66-61ea273dfb50
                Copyright ©2011 Giani et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 December 2010
                : 5 May 2011
                Categories
                Research

                Developmental biology
                Developmental biology

                Comments

                Comment on this article