71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isoform-specific expression of p120 affects cell motility and migration during development and tumor progression. The DIPA coiled-coil protein is a novel binding partner to the conserved isoform 1–specific head domain of p120 family members. Zebrafish data suggest that DIPA is mechanistically linked to p120 isoform–specific function in development.

          Abstract

          p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101–amino acid “head domain” comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain–specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin–mediated development.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast.

          The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transformation of intact yeast cells treated with alkali cations.

            Intact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl. The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmid DNA. Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced. The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A core function for p120-catenin in cadherin turnover

              p120-catenin stabilizes epithelial cadherin (E-cadherin) in SW48 cells, but the mechanism has not been established. Here, we show that p120 acts at the cell surface to control cadherin turnover, thereby regulating cadherin levels. p120 knockdown by siRNA expression resulted in dose-dependent elimination of epithelial, placental, neuronal, and vascular endothelial cadherins, and complete loss of cell–cell adhesion. ARVCF and δ-catenin were functionally redundant, suggesting that proper cadherin-dependent adhesion requires the presence of at least one p120 family member. The data reveal a core function of p120 in cadherin complexes, and strongly predict a dose-dependent loss of E-cadherin in tumors that partially or completely down-regulate p120.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 September 2014
                : 25
                : 17
                : 2592-2603
                Affiliations
                [1] aVanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
                [2] bDepartment of Biological Sciences, Vanderbilt University, Nashville, TN 37235
                [3] cDepartment of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
                [4] dEpithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
                Emory University
                Author notes
                1Address correspondence to: Albert B. Reynolds ( al.reynolds@ 123456vanderbilt.edu ).
                Article
                E13-08-0492
                10.1091/mbc.E13-08-0492
                4148249
                25009281
                c285941c-1e3f-4fb1-b0d5-daf0af777009
                © 2014 Markham et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 26 August 2013
                : 30 June 2014
                : 02 July 2014
                Categories
                Articles
                Cytoskeleton

                Molecular biology
                Molecular biology

                Comments

                Comment on this article