23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut microbiota: A new target of traditional Chinese medicine for insomnia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" id="d3269942e212">All species have a physiological need for sleep, and sleep is crucial for the preservation and restoration of many physiological processes in the body. Recent research on the effects of gut microbiota on brain function has produced essential data on the relationship between them. It has been discovered that dysregulation of the gut-brain axis is related to insomnia. Certain metabolites of gut microbiota have been linked to insomnia, and disturbances in gut microbiota can worsen insomnia. Traditional Chinese medicine (TCM) has unique advantages for the treatment of insomnia. Taking the gut microbiota as the target and determining the scientific relevance of TCM to the prevention and treatment of insomnia may lead to new concepts for the treatment of sleep disorders and improve the therapeutic effect of sleep. Taking the gut microbiota as an entry point, this paper reviews the relationship between gut microbiota and TCM, the relationship between gut microbiota and insomnia, the mechanism by which gut microbiota regulate sleep, and the mechanism by which TCM regulates gut microbiota for insomnia prevention and treatment. This review provides new ideas for the prevention and treatment of insomnia through TCM and new ideas for drug development. </p>

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.

          Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiota, metabolites and host immunity.

            The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of short-chain fatty acids in microbiota–gut–brain communication

              Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
                Bookmark

                Author and article information

                Journal
                Biomedicine & Pharmacotherapy
                Biomedicine & Pharmacotherapy
                Elsevier BV
                07533322
                April 2023
                April 2023
                : 160
                : 114344
                Article
                10.1016/j.biopha.2023.114344
                36738504
                bff7d05e-102f-4f50-9f11-375166369875
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article