5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms

      , , , , , ,
      Water
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lake Tana is Ethiopia’s largest lake and is infested with invasive water hyacinth (E. crassipes), which endangers the lake’s biodiversity and habitat. Using appropriate remote sensing detection methods and determining the seasonal distribution of the weed is important for decision-making, water resource management, and environmental protection. As the demand for the reliable estimation of E. crassipes mapping from satellite data grows, comparing the performance of different machine learning algorithms could help in identifying the most effective method for E. crassipes detection in the lake. Therefore, this study aimed to examine the ability of random forest (RF), support vector machine (SVM), and classification and regression tree (CART) machine learning algorithms to detect E. crassipes and estimating seasonal spatial coverage of the weed on the Google Earth Engine (GEE) platform using Landsat 8 and Sentinel 2 images. Cloud-masked monthly median composite Landsat 8 and Sentinel 2 data from October 2021 and 2022, January 2022 and 2023, March 2022, and June 2022 were used to represent autumn, winter, spring, and summer, respectively. Four spectral indices were derived and used in combination with spectral bands to improve the E. crassipes detection accuracy. All methods achieved greater than 95% and 90% overall accuracy when using Sentinel 2 and Landsat 8 images, respectively. Using both data sets, all methods achieved a greater than 93% F1 score for E. crassipes detection. Though the difference in performance between the methods was small, the RF was the most accurate, while the SVM and CART methods had the same accuracy. The maximum E. crassipes coverage area was observed in autumn (22.4 km2), while the minimum (2.2 km2) was observed in summer. Based on Sentinel 2 data, the E. crassipes area coverage decreased significantly by 62.5% from winter to spring and increased significantly by 81.7% from summer to autumn. The findings suggested that the RF classifier was the most accurate E. crassipes detection algorithm, and autumn was an appropriate season for E. crassipes detection in Lake Tana.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Support-vector networks

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Red and photographic infrared linear combinations for monitoring vegetation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                March 2023
                February 24 2023
                : 15
                : 5
                : 880
                Article
                10.3390/w15050880
                be4a6f37-acc5-4505-817b-a8193f662508
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article