11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic “ genetic” etiology or a symptomatic “ acquired” component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium channels. The high prevalence of ion channels in epilepsy pathogenesis led to the causative concept of “ion channelopathies,” which can be elicited by specific mutations in the coding or promoter regions of genes in genetic epilepsies. Intriguingly, expression changes of the same ion channel genes by augmentation of specific transcription factors (TFs) early after an insult can underlie acquired epilepsies. In this study, we review how the transcriptional regulation of ion channels in both genetic and acquired epilepsies can be controlled, and compare these epilepsy “ion channelopathies” with other neurodevelopmental disorders.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: not found
          • Article: not found

          Rare and common variants: twenty arguments.

          Genome-wide association studies have greatly improved our understanding of the genetic basis of disease risk. The fact that they tend not to identify more than a fraction of the specific causal loci has led to divergence of opinion over whether most of the variance is hidden as numerous rare variants of large effect or as common variants of very small effect. Here I review 20 arguments for and against each of these models of the genetic basis of complex traits and conclude that both classes of effect can be readily reconciled.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epilepsy-associated genes.

            Development in genetic technology has led to the identification of an increasing number of genes associated with epilepsy. These discoveries will both provide the basis for including genetic tests in clinical practice and improve diagnosis and treatment of epilepsy. By searching through several databases (OMIM, HGMD, and EpilepsyGene) and recent publications on PubMed, we found 977 genes that are associated with epilepsy. We classified these genes into 4 categories according to the manifestation of epilepsy in phenotypes. We found 84 genes that are considered as epilepsy genes: genes that cause epilepsies or syndromes with epilepsy as the core symptom. 73 genes were listed as neurodevelopment-associated genes: genes associated with both brain-development malformations and epilepsy. Several genes (536) were epilepsy-related: genes associated with both physical or other systemic abnormalities and epilepsy or seizures. We found 284 additional genes putatively associated with epilepsy; this requires further verification. These integrated data will provide new insights useful for both including genetic tests in the clinical practice and evaluating the results of genetic tests. We also summarized the epilepsy-associated genes according to their function, with the goal to better characterize the association between genes and epilepsies and to further understand the mechanisms underlying epilepsy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New avenues for anti-epileptic drug discovery and development.

              Despite the introduction of over 15 third-generation anti-epileptic drugs, current medications fail to control seizures in 20-30% of patients. However, our understanding of the mechanisms mediating the development of epilepsy and the causes of drug resistance has grown substantially over the past decade, providing opportunities for the discovery and development of more efficacious anti-epileptic and anti-epileptogenic drugs. In this Review we discuss how previous preclinical models and clinical trial designs may have hampered the discovery of better treatments. We propose that future anti-epileptic drug development may be improved through a new joint endeavour between academia and the industry, through the identification and application of tools for new target-driven approaches, and through comparative preclinical proof-of-concept studies and innovative clinical trials designs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                14 January 2020
                2019
                : 13
                : 587
                Affiliations
                Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center , Bonn, Germany
                Author notes

                Edited by: Eleonora Aronica, University Medical Center Amsterdam, Netherlands

                Reviewed by: Hee Jung Chung, University of Illinois at Urbana-Champaign, United States; Darrin Brager, University of Texas at Austin, United States

                *Correspondence: Karen M. J. van Loo karen.van_loo@ 123456ukb.uni-bonn.de
                Article
                10.3389/fncel.2019.00587
                6971179
                31992970
                bca77595-d57e-4cb1-8a3e-e495eed721b2
                Copyright © 2020 van Loo and Becker.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 September 2019
                : 23 December 2019
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 147, Pages: 10, Words: 8417
                Categories
                Cellular Neuroscience
                Mini Review

                Neurosciences
                genetic and acquired epilepsies,ion channels,channelopathies,transcriptional regulation,neurodevelopmental disorders

                Comments

                Comment on this article