12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Planar chiral metasurfaces with maximal tunable chiroptical response driven by bound states in the continuum

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optical metasurfaces with high-Q chiral resonances can boost light-matter interaction for various applications of chiral response for ultrathin, active, and nonlinear metadevices. Usually, such metasurfaces require sophisticated depth-resolved nanofabrication to realize subwavelength stereo-nanostructures, posing overwhelming challenges, especially in the short-wavelength range. Here, we suggest a novel planar design for chiral metasurfaces supporting bound states in the continuum (BICs) and demonstrate experimentally chiroptical responses with record-high Q-factors (Q=390) and near-perfect circular dichroism (CD=0.93) at optical frequencies. The symmetry-reduced meta-atoms are highly birefringent and support winding elliptical eigen-polarizations with opposite helicity surrounding the BIC polarization singularity, providing a convenient way for achieving maximal planar chirality tuned by either breaking in-plane symmetry or changing illumination direction. Such sharply resonant chirality realized in planar metasurfaces promises various practical applications in classical and quantum optics including chiral sensing, enantiomer selection, and chiral quantum emitters.

          Related collections

          Author and article information

          Journal
          13 December 2021
          Article
          2112.07122
          babd4412-417d-465e-9530-f622b9e5c5e9

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          physics.optics

          Optical materials & Optics
          Optical materials & Optics

          Comments

          Comment on this article