49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic Mapping of Protein Mutational Space by Prolonged Drift Reveals the Deleterious Effects of Seemingly Neutral Mutations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systematic mappings of the effects of protein mutations are becoming increasingly popular. Unexpectedly, these experiments often find that proteins are tolerant to most amino acid substitutions, including substitutions in positions that are highly conserved in nature. To obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNA methyltransferase. During this drift, multiple mutations gradually accumulated. Deep sequencing of the drifted gene ensembles allowed determination of the relative effects of all possible single nucleotide mutations. Despite being averaged across many different genetic backgrounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious, and an additional 16% were likely to be deleterious. In the early generations, the frequency of most deleterious mutations remained high. However, by the 17th generation, their frequency was consistently reduced, and those remaining were accepted alongside compensatory mutations. The tolerance to mutations measured in this laboratory drift correlated with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints dictating purging in nature and in this laboratory drift also seemed to overlap. Our experiment therefore provides an improved method for measuring the effects of protein mutations that more closely replicates the natural evolutionary forces, and thereby a more realistic view of the mutational space of proteins.

          Author Summary

          Understanding and predicting the effects of single nucleotide polymorphisms (SNPs) is of fundamental importance in many fields. Systematic experimental mappings of the effects of such mutations within a given gene/protein comprise an essential experimental tool for determining protein function and for refining models of protein evolution, as well as an important resource for improving prediction algorithms. Here, we present the results of a laboratory system that mimics the manner by which protein sequences diverge in nature: a prolonged process of gradually accumulating random mutations that retain the protein’s structure and function. The change in frequencies of mutations over generations, as obtained by deep sequencing, enabled us to assess the relative effects of all possible SNPs at the background of an accumulating number of mutations. Compared to previous reports, we found that > 80% of all possible amino acid exchanges have potential deleterious effects, with 67% being clearly deleterious. Tolerance vs. purging of mutations in our prolonged drift also showed better correlation with natural diversity. Overall, our experimental setup provides a better understanding of how protein sequences diverge in nature, plus a new basis for improving the prediction accuracy of the effects of protein mutations, and specifically of SNPs.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Deep mutational scanning: a new style of protein science.

          Mutagenesis provides insight into proteins, but only recently have assays that couple genotype to phenotype been used to assess the activities of as many as 1 million mutant versions of a protein in a single experiment. This approach-'deep mutational scanning'-yields large-scale data sets that can reveal intrinsic protein properties, protein behavior within cells and the consequences of human genetic variation. Deep mutational scanning is transforming the study of proteins, but many challenges must be tackled for it to fulfill its promise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing.

            Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ~1 × 10(-3) per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5'ApC3'/3'TpG5' sites (where bases 5'A and 3'T are mutated) and, to a lesser extent, at 5'GpC3'/3'CpG5' sites (where bases 5'G and 3'C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PredictProtein—an open resource for online prediction of protein structural and functional features

              PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                14 August 2015
                August 2015
                : 11
                : 8
                : e1004421
                Affiliations
                [001]Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
                University College London, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LRS DST. Performed the experiments: LRS. Analyzed the data: LRS ÁTP. Contributed reagents/materials/analysis tools: LRS ÁTP. Wrote the paper: LRS DST.

                Article
                PCOMPBIOL-D-15-00170
                10.1371/journal.pcbi.1004421
                4537296
                26274323
                b987ab1c-b37e-471d-95a1-89e4dc67e095
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 3 February 2015
                : 30 June 2015
                Page count
                Figures: 4, Tables: 2, Pages: 28
                Funding
                Financial support by the Israel Science Foundation (606/10) and DTRA (HDTRA1-11-C-0026) are gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article