7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The electronic properties of graphene

          This article reviews the basic theoretical aspects of graphene, a one atom thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. We show that the Dirac electrons behave in unusual ways in tunneling, confinement, and integer quantum Hall effect. We discuss the electronic properties of graphene stacks and show that they vary with stacking order and number of layers. Edge (surface) states in graphene are strongly dependent on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. We also discuss how different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Edge state in graphene ribbons: Nanometer size effect and edge shape dependence

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Boron nitride substrates for high-quality graphene electronics

              Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics far inferior to the expected intrinsic properties of graphene[1-12]. While suspending graphene above the substrate yields substantial improvement in device quality[13,14], this geometry imposes severe limitations on device architecture and functionality. Realization of suspended-like sample quality in a substrate supported geometry is essential to the future progress of graphene technology. In this Letter, we report the fabrication and characterization of high quality exfoliated mono- and bilayer graphene (MLG and BLG) devices on single crystal hexagonal boron nitride (h-BN) substrates, by a mechanical transfer process. Variable-temperature magnetotransport measurements demonstrate that graphene devices on h-BN exhibit enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping in comparison with SiO2-supported devices. The ability to assemble crystalline layered materials in a controlled way sets the stage for new advancements in graphene electronics and enables realization of more complex graphene heterostructres.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                May 2018
                May 22 2018
                : 120
                : 21
                Article
                10.1103/PhysRevLett.120.216601
                b5b0ecf6-2d02-4054-80e9-1585d559c0ac
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article