134
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A molecular timescale of eukaryote evolution and the rise of complex multicellular life

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time.

          Results

          Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10 types at 1500 Ma and 50 cell types at ~1000 Ma.

          Conclusions

          The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2–3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach.

          Rates of molecular evolution vary widely between lineages, but quantification of how rates change has proven difficult. Recently proposed estimation procedures have mainly adopted highly parametric approaches that model rate evolution explicitly. In this study, a semiparametric smoothing method is developed using penalized likelihood. A saturated model in which every lineage has a separate rate is combined with a roughness penalty that discourages rates from varying too much across a phylogeny. A data-driven cross-validation criterion is then used to determine an optimal level of smoothing. This criterion is based on an estimate of the average prediction error associated with pruning lineages from the tree. The methods are applied to three data sets of six genes across a sample of land plants. Optimally smoothed estimates of absolute rates entailed 2- to 10-fold variation across lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The origin and evolution of model organisms.

            The phylogeny and timescale of life are becoming better understood as the analysis of genomic data from model organisms continues to grow. As a result, discoveries are being made about the early history of life and the origin and development of complex multicellular life. This emerging comparative framework and the emphasis on historical patterns is helping to bridge barriers among organism-based research communities.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bangiomorpha pubescensn. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                2004
                28 January 2004
                : 4
                : 2
                Affiliations
                [1 ]NASA Astrobiology Institute and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
                [2 ]Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
                Article
                1471-2148-4-2
                10.1186/1471-2148-4-2
                341452
                15005799
                b0098451-6446-47f1-b69d-27e8188f0d53
                Copyright © 2004 Hedges et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 10 November 2003
                : 28 January 2004
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article