6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on Lung Clearance Index and Magnetic Resonance Imaging in Patients with Cystic Fibrosis and One or Two F508del Alleles

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele

          Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one copy of the Phe508del CFTR mutation. In a phase 2 trial involving patients who were heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508del-minimal function genotype), the next-generation CFTR corrector elexacaftor, in combination with tezacaftor and ivacaftor, improved Phe508del CFTR function and clinical outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cystic fibrosis.

            J. Elborn (2016)
            Cystic fibrosis is a common life-limiting autosomal recessive genetic disorder, with highest prevalence in Europe, North America, and Australia. The disease is caused by mutation of a gene that encodes a chloride-conducting transmembrane channel called the cystic fibrosis transmembrane conductance regulator (CFTR), which regulates anion transport and mucociliary clearance in the airways. Functional failure of CFTR results in mucus retention and chronic infection and subsequently in local airway inflammation that is harmful to the lungs. CFTR dysfunction mainly affects epithelial cells, although there is evidence of a role in immune cells. Cystic fibrosis affects several body systems, and morbidity and mortality is mostly caused by bronchiectasis, small airways obstruction, and progressive respiratory impairment. Important comorbidities caused by epithelial cell dysfunction occur in the pancreas (malabsorption), liver (biliary cirrhosis), sweat glands (heat shock), and vas deferens (infertility). The development and delivery of drugs that improve the clearance of mucus from the lungs and treat the consequent infection, in combination with correction of pancreatic insufficiency and undernutrition by multidisciplinary teams, have resulted in remarkable improvements in quality of life and clinical outcomes in patients with cystic fibrosis, with median life expectancy now older than 40 years. Innovative and transformational therapies that target the basic defect in cystic fibrosis have recently been developed and are effective in improving lung function and reducing pulmonary exacerbations. Further small molecule and gene-based therapies are being developed to restore CFTR function; these therapies promise to be disease modifying and to improve the lives of people with cystic fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial

              Cystic fibrosis transmembrane conductance regulator (CFTR) modulators correct the basic defect caused by CFTR mutations. Improvements in health outcomes have been achieved using the combination of a CFTR corrector and potentiator in people with CF (pwCF) homozygous for F508del . The addition of elexacaftor (ELX; VX-445), a next-generation CFTR corrector, to tezacaftor/ivacaftor (TEZ/IVA) further improved F508del-CFTR function and clinical outcomes in a phase 2 study in pwCF homozygous for F508del . A phase 3, multi-centre, randomised, double-blind, active-controlled trial of ELX in triple combination with TEZ/IVA (ELX/TEZ/IVA) in pwCF homozygous for F508del was conducted. Eligible participants were aged ≥12 years with stable disease and percent predicted forced expiratory volume in 1 second (ppFEV 1 ) of 40 to 90, inclusive. After a four-week TEZ/IVA run-in, participants were randomised 1:1 to four weeks of ELX/TEZ/IVA versus TEZ/IVA alone. The primary endpoint was absolute change from baseline (measured at the end of the TEZ/IVA run-in) in ppFEV 1 at week 4. Key secondary endpoints were absolute change in sweat chloride and CF Questionnaire–Revised respiratory domain (CFQ-R RD) score. ClinicalTrials.gov , number NCT03525548 . Between August and December 2018, 113 participants were enrolled. Following the run-in, 107 participants were randomised and completed the 4-week treatment period. The ELX/TEZ/IVA group had improvements in ppFEV 1 (10·0 percentage points, 95% CI 7·4 to 12·6, p<0·0001), sweat chloride concentration (−45·1 mmol/L, 95% CI −50·1 to −40·1, p<0·0001), and CFQ-R RD score (17·4 points, 95% CI 11·8 to 23·0, p<0·0001) compared with the TEZ/IVA group. ELX/TEZ/IVA was well tolerated, with no discontinuations. Most adverse events were mild or moderate; serious adverse events occurred in 4% (n=2) of participants receiving ELX/TEZ/IVA and 2% (n=1) receiving TEZ/IVA. ELX/TEZ/IVA provided clinically robust benefit vs TEZ/IVA alone with a favourable safety profile and demonstrates the potential to lead to transformative improvements in the lives of pwCF homozygous for F508del .
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                American Journal of Respiratory and Critical Care Medicine
                Am J Respir Crit Care Med
                American Thoracic Society
                1073-449X
                1535-4970
                August 01 2022
                August 01 2022
                : 206
                : 3
                : 311-320
                Affiliations
                [1 ]Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, and
                [2 ]Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany;
                [3 ]German Center for Lung Research (DZL), associated partner site, Berlin, Germany;
                [4 ]Department for Radiology,
                [5 ]Department for Pediatric Pneumology, Allergology, and Neonatology,
                [6 ]German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH),
                [7 ]Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics,
                [8 ]Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), and
                [9 ]Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany; and
                [10 ]Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
                [11 ]Department for Pneumology, and
                [12 ]Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany;
                [13 ]Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany;
                [14 ]Cluster of Excellence RESIST (EXC 2155), German Research Foundation (DFG), Hannover Medical School, Hannover, Germany;
                Article
                10.1164/rccm.202201-0219OC
                35536314
                af26f518-fcd5-4022-864b-ce2b5a044bae
                © 2022
                History

                Comments

                Comment on this article