19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FcγR Binding and ADCC Activity of Human IgG Allotypes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fc-receptor (FcγR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene likely form a layer of variation in the strength of the ADCC-response, but this has never been studied in detail. We produced all 27 known IgG allotypes and assessed FcγRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved similarly within subclass, large allotype-specific variation was found for IgG3. ADCC capacity was affected by residues 291, 292, and 296 in the CH2 domain through altered affinity or avidity for FcγRIIIa. Furthermore, allotypic variation in hinge length affected ADCC, likely through altered proximity at the immunological synapse. Thus, these functional differences between IgG allotypes have important implications for therapeutic applications and susceptibility to infectious-, allo- or auto-immune diseases.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses.

          Distinct genes encode 6 human receptors for IgG (hFcgammaRs), 3 of which have 2 or 3 polymorphic variants. The specificity and affinity of individual hFcgammaRs for the 4 human IgG subclasses is unknown. This information is critical for antibody-based immunotherapy which has been increasingly used in the clinics. We investigated the binding of polyclonal and monoclonal IgG1, IgG2, IgG3, and IgG4 to FcgammaRI; FcgammaRIIA, IIB, and IIC; FcgammaRIIIA and IIIB; and all known polymorphic variants. Wild-type and low-fucosylated IgG1 anti-CD20 and anti-RhD mAbs were also examined. We found that (1) IgG1 and IgG3 bind to all hFcgammaRs; (2) IgG2 bind not only to FcgammaRIIA(H131), but also, with a lower affinity, to FcgammaRIIA(R131) and FcgammaRIIIA(V158); (3) IgG4 bind to FcgammaRI, FcgammaRIIA, IIB and IIC and FcgammaRIIIA(V158); and (4) the inhibitory receptor FcgammaRIIB has a lower affinity for IgG1, IgG2, and IgG3 than all other hFcgammaRs. We also identified parameters that determine the specificity and affinity of hFcgammaRs for IgG subclasses. These results document how hFcgammaR specificity and affinity may account for the biological activities of antibodies. They therefore highlight the role of specific hFcgammaRs in the therapeutic and pathogenic effects of antibodies in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Divergent immunoglobulin g subclass activity through selective Fc receptor binding.

            Subclasses of immunoglobulin G (IgG) display substantial differences in their ability to mediate effector responses, contributing to variable activity of antibodies against microbes and tumors. We demonstrate that the mechanism underlying this long-standing observation of subclass dominance in function is provided by the differential affinities of IgG subclasses for specific activating IgG Fc receptors compared with their affinities for the inhibitory IgG Fc receptor. The significant differences in the ratios of activating-to-inhibitory receptor binding predicted the in vivo activity. We suggest that these highly predictable functions assigned by Fc binding will be an important consideration in the design of therapeutic antibodies and vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional significance of the perforin/granzyme cell death pathway.

              Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. Studies in gene-disrupted mice indicate that perforin is vital for cytotoxic effector function; it has an indispensable, but undefined, role in granzyme-mediated apoptosis. Despite its vital importance, the molecular and cellular functions of perforin and the basis of perforin and granzyme synergy remain poorly understood. The purpose of this review is to evaluate critically recent findings on cytotoxic granule-mediated cell death and to assess the functional significance of postulated cell-death pathways in appropriate pathophysiological contexts, including virus infection and susceptibility to experimental or spontaneous tumorigenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                06 May 2020
                2020
                : 11
                : 740
                Affiliations
                [1] 1Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam UMC, University of Amsterdam , Amsterdam, Netherlands
                [2] 2Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam , Amsterdam, Netherlands
                [3] 3Genmab , Utrecht, Netherlands
                [4] 4Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, Netherlands
                Author notes

                Edited by: Eric O. Long, National Institute of Allergy and Infectious Diseases (NIAID), United States

                Reviewed by: Amy W. Chung, The University of Melbourne, Australia; Geoffrey Thomas Hart, University of Minnesota Twin Cities, United States

                Present address: Steven W. de Taeye, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands

                These authors have contributed equally to this work

                This article was submitted to NK and Innate Lymphoid Cell Biology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00740
                7218058
                32435243
                ae6ea2ab-5bc1-4b62-ac90-2f028a44993c
                Copyright © 2020 de Taeye, Bentlage, Mebius, Meesters, Lissenberg-Thunnissen, Falck, Sénard, Salehi, Wuhrer, Schuurman, Labrijn, Rispens and Vidarsson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 January 2020
                : 01 April 2020
                Page count
                Figures: 7, Tables: 0, Equations: 1, References: 74, Pages: 16, Words: 0
                Categories
                Immunology
                Original Research

                Immunology
                antibodies,igg polymorphism,fc gamma receptor,antibody dependent cellular cytotoxicity,glycosylation

                Comments

                Comment on this article