76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CD34 is a transmembrane phosphoglycoprotein, first identified on hematopoietic stem and progenitor cells. Clinically, it is associated with the selection and enrichment of hematopoietic stem cells for bone marrow transplants. Due to these historical and clinical associations, CD34 expression is almost ubiquitously related to hematopoietic cells, and it is a common misconception that CD34-positive (CD34 +) cells in nonhematopoietic samples represent hematopoietic contamination. The prevailing school of thought states that multipotent mesenchymal stromal cells (MSC) do not express CD34. However, strong evidence demonstrates CD34 is expressed not only by MSC but by a multitude of other nonhematopoietic cell types including muscle satellite cells, corneal keratocytes, interstitial cells, epithelial progenitors, and vascular endothelial progenitors. In many cases, the CD34 + cells represent a small proportion of the total cell population and also indicate a distinct subset of cells with enhanced progenitor activity. Herein, we explore common traits between cells that express CD34, including associated markers, morphology and differentiation potential. We endeavor to highlight key similarities between CD34 + cells, with a focus on progenitor activity. A common function of CD34 has yet to be elucidated, but by analyzing and understanding links between CD34 + cells, we hope to be able to offer an insight into the overlapping properties of cells that express CD34. S tem C ells 2014;32:1380–1389

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views.

          Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche.

            In adult skin, each hair follicle contains a reservoir of stem cells (the bulge), which can be mobilized to regenerate the new follicle with each hair cycle and to reepithelialize epidermis during wound repair. Here we report new methods that permit their clonal analyses and engraftment and demonstrate the two defining features of stem cells, namely self-renewal and multipotency. We also show that, within the bulge, there are two distinct populations, one of which maintains basal lamina contact and temporally precedes the other, which is suprabasal and arises only after the start of the first postnatal hair cycle. This spatial distinction endows them with discrete transcriptional programs, but surprisingly, both populations are growth inhibited in the niche but can self-renew in vitro and make epidermis and hair when grafted. These findings suggest that the niche microenvironment imposes intrinsic "stemness" features without restricting the establishment of epithelial polarity and changes in gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lymphocyte homing and homeostasis.

              The integration and control of systemic immune responses depends on the regulated trafficking of lymphocytes. This lymphocyte "homing" process disperses the immunologic repertoire, directs lymphocyte subsets to the specialized microenvironments that control their differentiation and regulate their survival, and targets immune effector cells to sites of antigenic or microbial invasion. Recent advances reveal that the exquisite specificity of lymphocyte homing is determined by combinatorial "decision processes" involving multistep sequential engagement of adhesion and signaling receptors. These homing-related interactions are seamlessly integrated into the overall interaction of the lymphocyte with its environment and participate directly in the control of lymphocyte function, life-span, and population dynamics. In this article a review of the molecular basis of lymphocyte homing is presented, and mechanisms by which homing physiology regulated the homeostasis of immunologic resources are proposed.
                Bookmark

                Author and article information

                Journal
                Stem Cells
                Stem Cells
                stem
                Stem Cells (Dayton, Ohio)
                BlackWell Publishing Ltd (Oxford, UK )
                1066-5099
                1549-4918
                June 2014
                23 May 2014
                : 32
                : 6
                : 1380-1389
                Affiliations
                [a ]Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre Campus Nottingham, United Kingdom
                [b ]Tissue Engineering and Drug Delivery, School of Pharmacy, University of Nottingham Nottingham, United Kingdom
                Author notes
                Correspondence: Andrew Hopkinson, PhD, Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK. Telephone: +44-115-8231-014; Fax: +44-115-9709-963; E-mail: andrew.hopkinson@ 123456nottingham.ac.uk
                Article
                10.1002/stem.1661
                4260088
                24497003
                ad4ca773-b47e-4f19-a2c8-4d4189ebd299
                © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 September 2013
                : 15 January 2014
                Categories
                Tissue-Specific Stem Cells

                Molecular medicine
                cd34,stem cell,progenitor,mesenchymal,stromal,epithelial,endothelial
                Molecular medicine
                cd34, stem cell, progenitor, mesenchymal, stromal, epithelial, endothelial

                Comments

                Comment on this article