11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reveromycin A Administration Prevents Alveolar Bone Loss in Osteoprotegerin Knockout Mice with Periodontal Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic periodontal disease is characterized by alveolar bone loss and inflammatory changes. Reveromycin A (RMA) was recently developed and is a unique agent for inhibiting osteoclast activity. This study analysed the effects of RMA in an experimental mouse model of periodontitis involving osteoprotegerin (OPG)-knockout mice, specifically, whether it could control osteoclasts and reduce inflammation in periodontal tissue. We examined wild-type (WT) and OPG knockout mice (OPG KO) ligated with wire around contact points on the left first and second molars. RMA was administered twice a day to half of the mice. Using micro-computed tomography, we measured the volume of alveolar bone loss between the first and second molars, and also performed histological analysis. The OPG KO RMA+ group had significantly decreased osteoclast counts, alveolar bone loss, attachment loss, and inflammatory cytokine expression 8 weeks after ligation. Thus, RMA may reduce alveolar bone loss and inflamed periodontal tissues in patients with periodontitis.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.

          Osteoblasts/stromal cells are essentially involved in osteoclast differentiation and function through cell-to-cell contact (Fig. 8). Although many attempts have been made to elucidate the mechanism of the so-called "microenvironment provided by osteoblasts/stromal cells," (5-8) it has remained an open question until OPG and its binding molecule were cloned. The serial discovery of the new members of the TNF receptor-ligand family members has confirmed the idea that osteoclast differentiation and function are regulated by osteoblasts/stromal cells. RANKL, which has also been called ODF, TRANCE, or OPGL, is a member of the TNF ligand family. Expression of RANKL mRNA in osteoblasts/stromal cells is up-regulated by osteotropic factors such as 1 alpha, 25(OH)2D3, PTH, and IL-11. Osteoclast precursors express RANK, a TNF receptor family member, recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into pOCs in the presence of M-CSF. RANKL is also involved in the survival and fusion of pOCs and activation of mature osteoclasts. OPG, which has also been called OCIF or TR1, is a soluble receptor for RANKL and acts as a decoy receptor in the RANK-RANKL signaling system (Fig. 8). In conclusion, osteoblasts/stromal cells are involved in all of the processes of osteoclast development, such as differentiation, survival, fusion, and activation of osteoclasts (Fig. 8). Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts. RANKL, RANK, and OPG are three key molecules that regulate osteoclast recruitment and function. Further studies on these key molecules will elucidate the molecular mechanism of the regulation of osteoclastic bone resorption. This line of studies will establish new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions such as osteopetrosis, osteoporosis, metastatic bone disease, Paget's disease, rheumatoid arthritis, and periodontal bone disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism.

            We have generated RANK (receptor activator of NF-kappaB) nullizygous mice to determine the molecular genetic interactions between osteoprotegerin, osteoprotegerin ligand, and RANK during bone resorption and remodeling processes. RANK(-/-) mice lack osteoclasts and have a profound defect in bone resorption and remodeling and in the development of the cartilaginous growth plates of endochondral bone. The osteopetrosis observed in these mice can be reversed by transplantation of bone marrow from rag1(-/-) (recombinase activating gene 1) mice, indicating that RANK(-/-) mice have an intrinsic defect in osteoclast function. Calciotropic hormones and proresorptive cytokines that are known to induce bone resorption in mice and human were administered to RANK(-/-) mice without inducing hypercalcemia, although tumor necrosis factor alpha treatment leads to the rare appearance of osteoclast-like cells near the site of injection. Osteoclastogenesis can be initiated in RANK(-/-) mice by transfer of the RANK cDNA back into hematopoietic precursors, suggesting a means to critically evaluate RANK structural features required for bone resorption. Together these data indicate that RANK is the intrinsic cell surface determinant that mediates osteoprotegerin ligand effects on bone resorption and remodeling as well as the physiological and pathological effects of calciotropic hormones and proresorptive cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo.

              Bisphosphonates inhibit bone resorption and are therapeutically effective in diseases of increased bone turnover, such as Paget's disease and hypercalcemia of malignancy. The mechanisms by which they act remain unclear. Proposed mechanisms include inhibition of osteoclast formation from precursors and inhibitory or toxic effect on mature osteoclasts. We have developed a new in vitro model to study osteoclast survival and in this paper present in vitro and in vivo evidence that may explain both the observed reduction in osteoclast numbers and in bone resorption by mature osteoclasts, namely that bisphosphonates induce programmed cell death (apoptosis). Three bisphosphonates (risedronate, pamidronate, and clodronate) caused a 4- to 24-fold increase in the proportion of osteoclasts showing the characteristic morphology of apoptosis in vitro. This observation was confirmed in vivo in normal mice, in mice with increased bone resorption, and in nude mice with osteolytic cancer metastases, with similar-fold increases to those observed in vitro. Of the three compounds, risedronate, the most potent inhibitor of bone resorption in vivo, was the strongest inducer of osteoclast apoptosis in vitro. Osteoclast apoptosis may therefore be a major mechanism whereby bisphosphonates reduce osteoclast numbers and activity, and induction of apoptosis could be a therapeutic goal for new antiosteoclast drugs.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                12 November 2015
                2015
                : 5
                : 16510
                Affiliations
                [1 ]Department of Orthodontics, School of Dentistry, Aichi Gakuin University , Nagoya, Aichi 464-8651, Japan
                [2 ]Chemical Biology Research Group, RIKEN CSRS , Wako, Saitama 351-0198, Japan
                [3 ]Department of Oral Pathology, School of Dentistry, Aichi Gakuin University , Nagoya, Aichi 464-8650, Japan
                Author notes
                Article
                srep16510
                10.1038/srep16510
                4642347
                26561427
                aac87b2f-bf20-4cce-afc4-0be6aec014e1
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 21 July 2015
                : 14 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article