13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Need of booster vaccine doses to counteract the emergence of SARS-CoV-2 variants in the context of the Omicron variant and increasing COVID-19 cases: An update

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The emergence of different variants of SARS-CoV-2, including the Omicron (B.1.1.529) variant in November 2021, has resulted in a continuous major health concern at a global scale. Presently, the Omicron variant has spread very rapidly worldwide within a short time period. As the most mutated variant of SARS-CoV-2, Omicron has instilled serious uncertainties on the effectiveness of humoral adaptive immunity generated by COVID-19 vaccination or an active viral infection as well as the protection provided by antibody-based immunotherapies. Amidst such high public health concerns, the need to carry out booster vaccination has been emphasized. Current evidence reveals the importance of incorporating booster vaccination using several vaccine platforms, such as viral vector- and mRNA-based vaccines, as well as other platforms that are under explorative investigations. Further research is being conducted to assess the effectiveness and durability of protection provided by booster COVID-19 vaccination against Omicron and other SARS-CoV-2 variants.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

          Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant

            Background The B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), has contributed to a surge in cases in India and has now been detected across the globe, including a notable increase in cases in the United Kingdom. The effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against this variant has been unclear. Methods We used a test-negative case–control design to estimate the effectiveness of vaccination against symptomatic disease caused by the delta variant or the predominant strain (B.1.1.7, or alpha variant) over the period that the delta variant began circulating. Variants were identified with the use of sequencing and on the basis of the spike ( S ) gene status. Data on all symptomatic sequenced cases of Covid-19 in England were used to estimate the proportion of cases with either variant according to the patients’ vaccination status. Results Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% confidence interval [CI], 25.2 to 35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5 to 51.7); the results were similar for both vaccines. With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. Conclusions Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose. This finding would support efforts to maximize vaccine uptake with two doses among vulnerable populations. (Funded by Public Health England.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity

              Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals > 65 years old. Scarcity of naive T cells was also associated with ageing and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between ageing and impaired adaptive immune responses to SARS-CoV-2.
                Bookmark

                Author and article information

                Journal
                Hum Vaccin Immunother
                Hum Vaccin Immunother
                Human Vaccines & Immunotherapeutics
                Taylor & Francis
                2164-5515
                2164-554X
                20 May 2022
                2022
                20 May 2022
                : 18
                : 5
                : 2065824
                Affiliations
                [a ]Department of Chemistry, Government College of Engineering; , Keonjhar, India
                [b ]Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University; , Edfina, El-Beheira, Egypt
                [c ]Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit DeenDayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU); , Mathura, India
                [d ]Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University; , Makassar, Indonesia
                [e ]Department of Microbiology, Prathima Institute of Medical Sciences; , Karimnagar, India
                [f ]Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management; , Balangir, India
                [g ]Dental Basic Science Department, College of Dentistry, University of Duhok; , Duhok, Iraq
                [h ]Department of Microbiology and Cell Biology, Indian Institute of Science; , Bengaluru, India
                [i ]Department of Biotechnology, School of Life Science and Biotechnology, Adamas University; , Kolkata, India
                [j ]Division of Pathology, ICAR-Indian Veterinary Research Institute; , Bareilly, India
                Author notes
                CONTACT Ranjan K. Mohapatra ranjank_mohapatra@ 123456yahoo.com Department of Chemistry, Government College of Engineering; , Keonjhar, Odisha, 758002, India
                Kuldeep Dhama kdhama@ 123456rediffmail.comIf Division of Pathology, ICAR-Indian Veterinary Research Institute; , Bareilly, India.
                Author information
                https://orcid.org/0000-0001-7623-3343
                https://orcid.org/0000-0002-2013-487X
                https://orcid.org/0000-0001-7763-5547
                https://orcid.org/0000-0002-9538-9789
                https://orcid.org/0000-0002-3958-239X
                https://orcid.org/0000-0001-7469-4752
                Article
                2065824
                10.1080/21645515.2022.2065824
                9897647
                35594528
                a711c48f-094b-4d2f-8eb8-55b57941a1d7
                © 2022 Government College of Engineering. Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

                History
                Page count
                Figures: 1, References: 97, Pages: 9
                Categories
                Article Commentary
                Coronavirus – Commentary

                Molecular medicine
                sars-cov-2,omicron variant,b.1.1.529,vaccines,booster doses,enhancing immunity,protection

                Comments

                Comment on this article