9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last three years, after the outbreak of the COVID-19 pandemic, an unprecedented number of novel diagnostic tests have been developed. Assays to evaluate the immune response to SARS-CoV-2 have been widely considered as part of the control strategy. The lateral flow immunoassay (LFIA), to detect both IgM and IgG against SARS-CoV-2, has been widely studied as a point-of-care (POC) test. Compared to laboratory tests, LFIAs are faster, cheaper and user-friendly, thus available also in areas with low economic resources. Soon after the onset of the pandemic, numerous kits for rapid antibody detection were put on the market with an emergency use authorization. However, since then, scientists have tried to better define the accuracy of these tests and their usefulness in different contexts. In fact, while during the first phase of the pandemic LFIAs for antibody detection were auxiliary to molecular tests for the diagnosis of COVID-19, successively these tests became a tool of seroprevalence surveillance to address infection control policies. When in 2021 a massive vaccination campaign was implemented worldwide, the interest in LFIA reemerged due to the need to establish the extent and the longevity of immunization in the vaccinated population and to establish priorities to guide health policies in low-income countries with limited access to vaccines. Here, we summarize the accuracy, the advantages and limits of LFIAs as POC tests for antibody detection, highlighting the efforts that have been made to improve this technology over the last few years.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

          Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019

            Abstract Background The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. Methods A total of 173 patients with SARS-CoV-2 infection were enrolled. Their serial plasma samples (n=535) collected during the hospitalization were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2. The dynamics of antibodies with the disease progress was analyzed. Results Among 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1%, 82.7% and 64.7%, respectively. The reason for the negative antibody findings in 12 patients might due to the lack of blood samples at the later stage of illness. The median seroconversion time for Ab, IgM and then IgG were day-11, day-12 and day-14, separately. The presence of antibodies was <40% among patients within 1-week since onset, and rapidly increased to 100.0% (Ab), 94.3% (IgM) and 79.8% (IgG) since day-15 after onset. In contrast, RNA detectability decreased from 66.7% (58/87) in samples collected before day-7 to 45.5% (25/55) during day 15-39. Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 (p<0.001), even in early phase of 1-week since onset (p=0.007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (p=0.006). Conclusions The antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunology of COVID-19: current state of the science

              The coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
                Bookmark

                Author and article information

                Journal
                AIMS Microbiol
                AIMS Microbiol
                microbiol
                AIMS Microbiology
                AIMS Press
                2471-1888
                13 April 2023
                2023
                : 9
                : 2
                : 375-401
                Affiliations
                [1] Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
                Author notes
                * Correspondence: Email: lucia.spicuzza@ 123456unict.it .
                Article
                microbiol-09-02-020
                10.3934/microbiol.2023020
                10113162
                37091823
                a6ead48d-9f06-4b97-a39f-d5d314b8fef5
                © 2023 the Author(s), licensee AIMS Press

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0)

                History
                : 1 November 2022
                : 31 March 2023
                : 4 April 2023
                Categories
                Mini Review

                lateral flow immunoassay,covid-19,sars-cov-2,igg,igm,rapid antibody test,point of care test,neutralizing antibodies

                Comments

                Comment on this article