12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single Radiotherapy Fraction with Local Anti-CD40 Therapy Generates Effective Abscopal Responses in Mouse Models of Cervical Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current treatment options for advanced cervical cancer are limited, especially for patients in poor-resource settings, with a 17% 5-year overall survival rate. Here, we report results in animal models of advanced cervical cancer, showing that anti-CD40 therapy can effectively boost the abscopal effect, whereby radiotherapy of a tumor at one site can engender therapeutically significant responses in tumors at distant untreated sites. In this study, two subcutaneous cervical cancer tumors representing one primary and one metastatic tumor were generated in each animal. Only the primary tumor was treated and the responses of both tumors were monitored. The study was repeated as a function of different treatment parameters, including radiotherapy dose and dosing schedule of immunoadjuvant anti-CD40. The results consistently suggest that one fraction dose of radiotherapy with a single dose of agonistic anti-CD40 can generate highly effective abscopal responses, with a significant increase in animal survival ( p = 0.0004). Overall, 60% of the mice treated with this combination showed long term survival with complete tumor regression, where tumors of mice in other cohorts continued to grow. Moreover, re-challenged responders to the treatment developed vitiligo, suggesting developed immune memory for this cancer. The findings offer a potential new therapy approach, which could be further investigated and developed for the treatment of advanced cervical cancer, with major potential impact, especially in resource-poor settings.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer of the cervix uteri

          Since the publication of the last FIGO Cancer Report there have been giant strides in the global effort to reduce the burden of cervical cancer, with WHO announcing a call for elimination. In over 80 countries, including LMICs, HPV vaccination is now included in the national program. Screening has also seen major advances with implementation of HPV testing on a larger scale. However, these interventions will take a few years to show their impact. Meanwhile, over half a million new cases are added each year. Recent developments in imaging and increased use of minimally invasive surgery have changed the paradigm for management of these cases. The FIGO Gynecologic Oncology Committee has revised the staging system based on these advances. This chapter discusses the management of cervical cancer based on the stage of disease, including attention to palliation and quality of life issues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biological response of cancer cells to radiation treatment

            Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability to spread or metastasize throughout the body. In recent years, remarkable progress has been made toward the understanding of proposed hallmarks of cancer development, care, and treatment modalities. Radiation therapy or radiotherapy is an important and integral component of cancer management, mostly conferring a survival benefit. Radiation therapy destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years, radiation therapy has been driven by constant technological advances and approximately 50% of all patients with localized malignant tumors are treated with radiation at some point in the course of their disease. In radiation oncology, research and development in the last three decades has led to considerable improvement in our understanding of the differential responses of normal and cancer cells. The biological effectiveness of radiation depends on the linear energy transfer (LET), total dose, number of fractions and radiosensitivity of the targeted cells or tissues. Radiation can either directly or indirectly (by producing free radicals) damages the genome of the cell. This has been challenged in recent years by a newly identified phenomenon known as radiation induced bystander effect (RIBE). In RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues demonstrate similar responses to that of the directly irradiated cells. Understanding the cancer cell responses during the fractions or after the course of irradiation will lead to improvements in therapeutic efficacy and potentially, benefitting a significant proportion of cancer patients. In this review, the clinical implications of radiation induced direct and bystander effects on the cancer cell are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cervical cancer in low and middle income countries: Addressing barriers to radiotherapy delivery

              The global cervical cancer burden falls disproportionately upon women in low and middle-income countries. Insufficient infrastructure, lack of access to preventive HPV vaccines, screening, and treatment, as well as limited trained personnel and training opportunities, continue to impede efforts to reduce incidence and mortality in these nations. These hurdles have been substantial challenges to radiation delivery in particular, preventing treatment for a disease in which radiation is a cornerstone of curative therapy. In this review, we discuss the breadth of these barriers, while illustrating the need for adaptive approaches by proposing the use of brachytherapy alone in the absence of available external beam radiotherapy. Such modifications to current guidelines are essential to maximize radiation treatment for cervical cancer in limited resource settings.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                22 April 2020
                April 2020
                : 12
                : 4
                : 1026
                Affiliations
                [1 ]Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA wngwa@ 123456bwh.harvard.edu (W.N.)
                [2 ]Department of Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 04181 Kosice, Slovakia
                [3 ]Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
                [4 ]Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
                [5 ]Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD 21287, USA
                Author notes
                Author information
                https://orcid.org/0000-0001-8394-0425
                Article
                cancers-12-01026
                10.3390/cancers12041026
                7226489
                32331490
                a47f60ac-a6bb-4f3b-a575-337c4b0b94ad
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 March 2020
                : 20 April 2020
                Categories
                Article

                cervical cancer,abscopal effect,in situ vaccination,radiotherapy,anti-cd40,immunotherapy

                Comments

                Comment on this article