7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complex architecture and epigenomic impact of plant T-DNA insertions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bacterium Agrobacterium tumefaciens has been the workhorse in plant genome engineering. Customized replacement of native tumor-inducing (Ti) plasmid elements enabled insertion of a sequence of interest called Transfer-DNA (T-DNA) into any plant genome. Although these transfer mechanisms are well understood, detailed understanding of structure and epigenomic status of insertion events was limited by current technologies. Here we applied two single-molecule technologies and analyzed Arabidopsis thaliana lines from three widely used T-DNA insertion collections (SALK, SAIL and WISC). Optical maps for four randomly selected T-DNA lines revealed between one and seven insertions/rearrangements, and the length of individual insertions from 27 to 236 kilobases. De novo nanopore sequencing-based assemblies for two segregating lines partially resolved T-DNA structures and revealed multiple translocations and exchange of chromosome arm ends. For the current TAIR10 reference genome, nanopore contigs corrected 83% of non-centromeric misassemblies. The unprecedented contiguous nucleotide-level resolution enabled an in-depth study of the epigenome at T-DNA insertion sites. SALK_059379 line T-DNA insertions were enriched for 24nt small interfering RNAs (siRNA) and dense cytosine DNA methylation, resulting in transgene silencing via the RNA-directed DNA methylation pathway. In contrast, SAIL_232 line T-DNA insertions are predominantly targeted by 21/22nt siRNAs, with DNA methylation and silencing limited to a reporter, but not the resistance gene. Additionally, we profiled the H3K4me3, H3K27me3 and H2A.Z chromatin environments around T-DNA insertions using ChIP-seq in SALK_059379, SAIL_232 and five additional T-DNA lines. We discovered various effect s ranging from complete loss of chromatin marks to the de novo incorporation of H2A.Z and trimethylation of H3K4 and H3K27 around the T-DNA integration sites. This study provides new insights into the structural impact of inserting foreign fragments into plant genomes and demonstrates the utility of state-of-the-art long-range sequencing technologies to rapidly identify unanticipated genomic changes.

          Author summary

          Our routine ability to add or alter genes in plant genomes using transgenesis has proven to be a game changer to plant sciences. Transgenics not only enables the study of gene function but also allows the development of modern crop plants without the unwanted genetic baggage coming from natural crossing. A major tool to create transgenics is the Agrobacterium system which naturally shuttles and integrates pieces of foreign DNA into its host genome. While the position and number of integrations was relatively easy to track, molecular tools never allowed to see the integrated piece of DNA within a single “picture”. Here we have utilized state-of-the-art DNA sequencing technology to capture the size and structure of multiple DNA insertion events in a plant genome. We discovered that insertion of the anticipated DNA fragment occurred as multiple concatenated full and partial fragments that led in some cases to intra- and interchromosomal rearrangements. Our analysis of the epigenetic landscapes showed variable effects from silencing of the integrated foreign DNA to alterations of chromatin marks and thus chromatin structure and functionality.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A clustering approach for identification of enriched domains from histone modification ChIP-Seq data.

            Chromatin states are the key to gene regulation and cell identity. Chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-Seq) is increasingly being used to map epigenetic states across genomes of diverse species. Chromatin modification profiles are frequently noisy and diffuse, spanning regions ranging from several nucleosomes to large domains of multiple genes. Much of the early work on the identification of ChIP-enriched regions for ChIP-Seq data has focused on identifying localized regions, such as transcription factor binding sites. Bioinformatic tools to identify diffuse domains of ChIP-enriched regions have been lacking. Based on the biological observation that histone modifications tend to cluster to form domains, we present a method that identifies spatial clusters of signals unlikely to appear by chance. This method pools together enrichment information from neighboring nucleosomes to increase sensitivity and specificity. By using genomic-scale analysis, as well as the examination of loci with validated epigenetic states, we demonstrate that this method outperforms existing methods in the identification of ChIP-enriched signals for histone modification profiles. We demonstrate the application of this unbiased method in important issues in ChIP-Seq data analysis, such as data normalization for quantitative comparison of levels of epigenetic modifications across cell types and growth conditions. http://home.gwu.edu/ approximately wpeng/Software.htm. Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).

              Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ResourcesRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Validation
                Role: InvestigationRole: MethodologyRole: Resources
                Role: Formal analysisRole: InvestigationRole: Writing – original draft
                Role: ResourcesRole: SoftwareRole: Visualization
                Role: InvestigationRole: MethodologyRole: Resources
                Role: MethodologyRole: Resources
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                18 January 2019
                January 2019
                : 15
                : 1
                : e1007819
                Affiliations
                [1 ] Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States of America
                [2 ] J. Craig Venter Institute, La Jolla, CA, United States of America
                [3 ] Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States of America
                [4 ] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, United States of America
                [5 ] Donald Danforth Plant Science Center, St. Louis, MO, United States of America
                JGI-Stanford Human Genome Center, UNITED STATES
                Author notes

                I have read the journal's policy and the authors of this manuscript have the following competing interests: FJ is an employee of Bayer Crop Science. JRE serves on the scientific advisory boards of Cibus, Zymo Research and Pathway Genomics Inc.

                [¤]

                Current address: Bayer Crop Science, Chesterfield, MO, United States of America

                Author information
                http://orcid.org/0000-0001-5741-4931
                http://orcid.org/0000-0003-0399-9043
                http://orcid.org/0000-0001-6272-2875
                http://orcid.org/0000-0001-8643-1407
                http://orcid.org/0000-0003-0012-7223
                http://orcid.org/0000-0001-9582-3533
                http://orcid.org/0000-0003-1791-002X
                http://orcid.org/0000-0001-5799-5895
                Article
                PGENETICS-D-18-01776
                10.1371/journal.pgen.1007819
                6338467
                30657772
                a131474a-ad6c-4413-8665-658b3963bf74
                © 2019 Jupe et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 September 2018
                : 7 November 2018
                Page count
                Figures: 4, Tables: 1, Pages: 25
                Funding
                FJ was supported through a Human Frontier Science Program Organization long-term fellowship ( http://www.hfsp.org/). MZ was supported by the Salk Pioneer Postdoctoral Endowment Fund as well as by a Deutsche Forschungsgemeinschaft (DFG; http://www.dfg.de/) research fellowship (Za-730/1-1). JRE is an Investigator of the Howard Hughes Medical Institute ( www.hhmi.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Genomics
                Plant Genomics
                Biology and Life Sciences
                Bioengineering
                Biotechnology
                Plant Biotechnology
                Plant Genomics
                Engineering and Technology
                Bioengineering
                Biotechnology
                Plant Biotechnology
                Plant Genomics
                Biology and Life Sciences
                Plant Science
                Plant Biotechnology
                Plant Genomics
                Biology and Life Sciences
                Genetics
                Plant Genetics
                Plant Genomics
                Biology and Life Sciences
                Plant Science
                Plant Genetics
                Plant Genomics
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNAs
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Chromatin
                Biology and Life Sciences
                Genetics
                Epigenetics
                Chromatin
                Biology and Life Sciences
                Genetics
                Gene Expression
                Chromatin
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Seedlings
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genomic Libraries
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Genomic Libraries
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Arabidopsis Thaliana
                Research and Analysis Methods
                Model Organisms
                Arabidopsis Thaliana
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Brassica
                Arabidopsis Thaliana
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Plant and Algal Models
                Arabidopsis Thaliana
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Sequence Assembly Tools
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Sequence Assembly Tools
                Custom metadata
                Raw ONT sequencing data was deposited in the European Nucleotide Archive (ENA) under project PRJEB23977 (ERP105765). Final polished assemblies were deposited in the ENA Genome Assembly Database PRJEB23977. Raw BNG molecules and assembled maps are deposited under BioProjects PRJNA387199, PRJNA387199, PRJNA387199 and PRJNA387199. Short-read datasets are deposited under GEO accession GSE108401.

                Genetics
                Genetics

                Comments

                Comment on this article