7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes

      , ,
      Environmental Science and Pollution Research
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: not found
          • Article: not found

          Advanced oxidation processes (AOP) for water purification and recovery

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Degradation and removal methods of antibiotics from aqueous matrices--a review.

            Over the past few years, antibiotics have been considered emerging pollutants due to their continuous input and persistence in the aquatic ecosystem even at low concentrations. They have been detected worldwide in environmental matrices, indicating their ineffective removal from water and wastewater using conventional treatment methods. To prevent this contamination, several processes to degrade/remove antibiotics have been studied. This review addresses the current state of knowledge concerning the input sources, occurrence and mainly the degradation and removal processes applied to a specific class of micropollutants, the antibiotics. In this paper, different remediation techniques were evaluated and compared, such as conventional techniques (biological processes, filtration, coagulation, flocculation and sedimentation), advanced oxidation processes (AOPs), adsorption, membrane processes and combined methods. In this study, it was found that ozonation, Fenton/photo-Fenton and semiconductor photocatalysis were the most tested methodologies. Combined processes seem to be the best solution for the treatment of effluents containing antibiotics, especially those using renewable energy and by-products materials. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human Reference Population

              Bisphenol A (BPA) is used to manufacture polycarbonate plastic and epoxy resins, which are used in baby bottles, as protective coatings on food containers, and for composites and sealants in dentistry. 4-Nonylphenol (NP) is used to make nonylphenol ethoxylates, nonionic surfactants applied as emulsifying, wetting, dispersing, or stabilizing agents in industrial, agricultural, and domestic consumer products. The potential for human exposure to BPA and NP is high because of their widespread use. We measured BPA and NP in archived urine samples from a reference population of 394 adults in the United States using isotope-dilution gas chromatography/mass spectrometry. The concentration ranges of BPA and NP were similar to those observed in other human populations. BPA was detected in 95% of the samples examined at concentrations ≥0.1 μg/L urine; the geometric mean and median concentrations were 1.33 μg/L (1.36 μg/g creatinine) and 1.28 μg/L (1.32 μg/g creatinine), respectively; the 95th percentile concentration was 5.18 μg/L (7.95 μg/g creatinine). NP was detected in 51% of the samples examined ≥0.1 μg/L. The median and 95th percentile concentrations were < 0.1 μg/L and 1.57 μg/L (1.39 μg/g creatinine), respectively. The frequent detection of BPA suggests widespread exposure to this compound in residents of the United States. The lower frequency of detection of NP than of BPA could be explained by a lower exposure of humans to NP, by different pharmacokinetic factors (i.e., absorption, distribution, metabolism, elimination), by the fact that 4-n-nonylphenol—the measured NP isomer—represents a small percentage of the NP used in commercial mixtures, or a combination of all of the above. Additional research is needed to determine the best urinary biomarker(s) to assess exposure to NP. Despite the sample population’s nonrepresentativeness of the U.S. population (although sample weights were used to improve the extent to which the results represent the U.S. population) and relatively small size, this study provides the first reference range of human internal dose levels of BPA and NP in a demographically diverse human population.
                Bookmark

                Author and article information

                Journal
                Environmental Science and Pollution Research
                Environ Sci Pollut Res
                Springer Science and Business Media LLC
                0944-1344
                1614-7499
                February 2016
                November 21 2015
                February 2016
                : 23
                : 4
                : 3195-3216
                Article
                10.1007/s11356-015-5803-x
                26590059
                a0c44a3c-2ddb-402f-b4df-97e3b57110a3
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article