Chronic kidney disease (CKD) is acknowledged worldwide to be a grave threat to public health, with the number of US end-stage kidney disease (ESKD) patients increasing steeply from 10,000 in 1973 to 703,243 in 2015. Protein-bound uremic toxins (PBUTs) are excreted by renal tubular secretion in healthy humans, but hardly removed by traditional haemodialysis (HD) in ESKD patients. The accumulation of these toxins is a major contributor to these sufferers’ morbidity and mortality. As a result, some improvements to dialytic removal have been proposed, each with their own upsides and drawbacks. Longer dialysis sessions and hemodiafiltration, though, have not performed especially well, while larger dialyzers, coupled with a higher dialysate flow, proved to have some efficiency in indoxyl sulfate (IS) clearance, but with reduced impact on patients’ quality of life. More efficient in removing PBUTs was fractionated plasma separation and adsorption, but the risk of occlusive thrombosis was worryingly high. A promising technique for the removal of PBUTs is binding competition, which holds great hopes for future HD. This short review starts by presenting the PBUTs chemistry with emphasis on the chemical interactions with the transport protein, human serum albumin (HSA). Recent membrane-based strategies targeting PBUTs removal are also presented, and their efficiency is discussed.