19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP 3Rs), inhibiting pro-apoptotic Ca 2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP 3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP 3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP 3R interaction and thus inducing Ca 2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton’s tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP 3R interaction.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib.

          Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity.

            Apoptosis can be triggered by members of the Bcl-2 protein family, such as Bim, that share only the BH3 domain with this family. Gene targeting in mice revealed important physiological roles for Bim. Lymphoid and myeloid cells accumulated, T cell development was perturbed, and most older mice accumulated plasma cells and succumbed to autoimmune kidney disease. Lymphocytes were refractory to apoptotic stimuli such as cytokine deprivation, calcium ion flux, and microtubule perturbation but not to others. Thus, Bim is required for hematopoietic homeostasis and as a barrier to autoimmunity. Moreover, particular death stimuli appear to activate apoptosis through distinct BH3-only proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bcl-2 family proteins and cancer.

              K. Yip, J Reed (2008)
              BCL-2 was the first anti-death gene discovered, a milestone with far reaching implications for tumor biology. Multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including six antiapoptotic, three structurally similar proapoptotic proteins and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. These proteins, in turn, are regulated through myriad post-translational modifications and interactions with other proteins. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis and autophagy, thus operating as nodal points at the convergence of multiple pathways with broad relevance to oncology. Experimental therapies targeting Bcl-2-family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may soon be available.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 September 2015
                11 July 2015
                : 6
                : 29
                : 27388-27402
                Affiliations
                1 Division of Hematology/Oncology, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
                2 Department of Medicine, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
                3 Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
                4 Case Comprehensive Cancer Center, Cleveland, Ohio, USA
                Author notes
                Correspondence to: Clark W. Distelhorst, cwd@ 123456case.edu
                Article
                10.18632/oncotarget.4489
                4694997
                26317541
                a00cf525-aa84-4651-8365-4ba2b03ab05b
                Copyright: © 2015 Lavik et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 April 2015
                : 1 July 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                bcl-2,inositol 1,4,5-trisphosphate receptor,abt-199,bruton’s tyrosine kinase,lymphoid malignancy

                Comments

                Comment on this article