46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mycobacterium leprae Phenolglycolipid-1 Expressed by Engineered M. bovis BCG Modulates Early Interaction with Human Phagocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.

          Author Summary

          Mycobacterium leprae, the causative agent of leprosy, is a chronic human disease responsible for irreversible peripheral nerve damage and deformities. Lepromatous leprosy, the most severe form of the disease, is accompanied by T-cell unresponsiveness, suggesting that M. leprae has evolved strategies to modulate host immune responses. However, the molecular mechanisms of M. leprae infection remain poorly understood, mainly because this bacterium has been to date impossible to grow in vitro. The present study reports an innovative approach to study the contribution of a phenolic glycolipid (PGL-1) specific of M. leprae in the cross-talk of the pathogen with host cells. We reprogrammed a biosynthetic pathway in a surrogate host, M. bovis BCG, to make it synthesize and display PGL-1 in the context of a mycobacterial envelope. Using this novel microbial tool, we found that PGL-1 production enhances the cellular invasiveness of BCG and promotes the entry via complement receptor 3-mediated phagocytosis. Bacterial uptake via this route was associated with reduced inflammatory responses in infected human macrophages. In addition, we showed that PGL-1 production inhibited the infection-induced maturation of human dendritic cells. Our findings thus provide new insights into the contribution and molecular mechanisms of action of PGL-1 in leprosy pathogenesis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          New use of BCG for recombinant vaccines.

          BCG, a live attenuated tubercle bacillus, is the most widely used vaccine in the world and is also a useful vaccine vehicle for delivering protective antigens of multiple pathogens. Extrachromosomal and integrative expression vectors carrying the regulatory sequences for major BCG heat-shock proteins have been developed to allow expression of foreign antigens in BCG. These recombinant BCG strains can elicit long-lasting humoral and cellular immune responses to foreign antigens in mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis.

            The authors have developed a simple and highly efficient system for generating allelic exchanges in both fast- and slow-growing mycobacteria. In this procedure a gene of interest, disrupted by a selectable marker, is cloned into a conditionally replicating (temperature-sensitive) shuttle phasmid to generate a specialized transducing mycobacteriophage. The temperature-sensitive mutations in the mycobacteriophage genome permit replication at the permissive temperature of 30 degrees C but prevent replication at the non-permissive temperature of 37 degrees C. Transduction at a non-permissive temperature results in highly efficient delivery of the recombination substrate to virtually all cells in the recipient population. The deletion mutations in the targeted genes are marked with antibiotic-resistance genes that are flanked by gammadelta-res (resolvase recognition target) sites. The transductants which have undergone a homologous recombination event can be conveniently selected on antibiotic-containing media. To demonstrate the utility of this genetic system seven different targeted gene disruptions were generated in three substrains of Mycobacterium bovis BCG, three strains of Mycobacterium tuberculosis, and Mycobacterium smegmatis. Mutants in the lysA, nadBC, panC, panCD, leuCD, Rv3291c and Rv0867c genes or operons were isolated as antibiotic-resistant (and in some cases auxotrophic) transductants. Using a plasmid encoding the gammadelta-resolvase (tnpR), the resistance genes could be removed, generating unmarked deletion mutations. It is concluded from the high frequency of allelic exchange events observed in this study that specialized transduction is a very efficient technique for genetic manipulation of mycobacteria and is a method of choice for constructing isogenic strains of M. tuberculosis, BCG or M. smegmatis which differ by defined mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The I domain is a major recognition site on the leukocyte integrin Mac- 1 (CD11b/CD18) for four distinct adhesion ligands

              Despite the identification and characterization of several distinct ligands for the leukocyte integrin (CD11/CD18) family of adhesion receptors, little is known about the structural regions on these molecules that mediate ligand recognition. In this report, we use alpha subunit chimeras of Mac-1 (CD11b/CD18) and p150,95 (CD11c/CD18), and an extended panel of newly generated and previously characterized mAbs specific to the alpha chain of Mac-1 to map the binding sites for four distinct ligands for Mac-1: iC3b, fibrinogen, ICAM-1, and the as-yet uncharacterized counter-receptor responsible for neutrophil homotypic adhesion. Epitopes of mAbs that blocked ligand binding were mapped with the chimeras and used to localize the ligand recognition sites because the data obtained from functional assays with the Mac-1/p150,95 chimeras were not easily interpreted. Results show that the I domain on the alpha chain of Mac-1 is an important recognition site for all four ligands, and that the NH2-terminal and perhaps divalent cation binding regions but not the COOH-terminal segment may contribute. The recognition sites in the I domain appear overlapping but not identical as individual Mac-1-ligand interactions are distinguished by the discrete patterns of inhibitory mAbs. Additionally, we find that the alpha subunit NH2-terminal region and divalent cation binding region, despite being separated by over 200 amino acids of the I domain, appear structurally apposed because three mAbs require the presence of both of these regions for antigenic reactivity, and chimeras that contain the NH2 terminus of p150,95 require the divalent cation binding region of p150,95 to associate firmly with the beta subunit.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2010
                October 2010
                21 October 2010
                : 6
                : 10
                : e1001159
                Affiliations
                [1 ]CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
                [2 ]Université de Toulouse, UPS, IPBS, Toulouse, France
                [3 ]Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
                Weill Cornell Medical College, United States of America
                Author notes

                ¤a: Current address: INRA UMR 1225, IHAP, Ecole Nationale Vétérinaire, Toulouse, France

                ¤b: Current address: Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

                ¤c: Current address: Diseases of the Developing World (DDW), GlaxoSmithKline I+D, Tres Cantos, Madrid, Spain

                Conceived and designed the experiments: GT CD MD CG. Performed the experiments: GT CAD CD WM PC AR NH NFB EP. Analyzed the data: GT CAD CD PC CG. Wrote the paper: GT CD MD CG.

                Article
                10-PLPA-RA-3240R3
                10.1371/journal.ppat.1001159
                2958813
                20975946
                a005e604-bfb2-4b46-991d-5984fac7dbdc
                Tabouret et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 April 2010
                : 23 September 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Genetics and Genomics/Functional Genomics
                Infectious Diseases/Bacterial Infections
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Innate Immunity

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article