13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Science Translational Medicine
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti–4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor–mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP–4-1BBL (RG7826) and CD19–4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen–mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP–4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer–bearing rhesus monkey. Combination of FAP–4-1BBL with tumor antigen–targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP– or CD19–4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8 + T cells. FAP– and CD19–4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

          Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition.

            Clinical trials with immune checkpoint inhibitors have provided important insights into the mode of action of anticancer immune therapies and potential mechanisms of immune escape. Development of the next wave of rational clinical combination strategies will require a deep understanding of the mechanisms by which combination partners influence the battle between the immune system's capabilities to fight cancer and the immune-suppressive processes that promote tumor growth. This review focuses on our current understanding of tumor and circulating pharmacodynamic correlates of immune modulation and elaborates on lessons learned from human translational research with checkpoint inhibitors. Actionable tumor markers of immune activation including CD8(+)T cells, PD-L1 IHC as a pharmacodynamic marker of T-cell function, T-cell clonality, and challenges with conduct of trials that ask scientific questions from serial biopsies are addressed. Proposals for clinical trial design, as well as future applications of peripheral pharmacodynamic endpoints as potential surrogates of early clinical activity, are discussed. On the basis of emerging mechanisms of response and immune escape, we propose the concept of the tumor immunity continuum as a framework for developing rational combination strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              4-1BB Costimulatory Signals Preferentially Induce CD8+ T Cell Proliferation and Lead to the Amplification In Vivo of Cytotoxic T Cell Responses

              The 4-1BB receptor is an inducible type I membrane protein and member of the tumor necrosis factor receptor (TNFR) superfamily that is rapidly expressed on the surface of CD4+ and CD8+ T cells after antigen- or mitogen-induced activation. Cross-linking of 4-1BB and the T cell receptor (TCR) on activated T cells has been shown to deliver a costimulatory signal to T cells. Here, we expand upon previously published studies by demonstrating that CD8+ T cells when compared with CD4+ T cells are preferentially responsive to both early activation events and proliferative signals provided via the TCR and 4-1BB. In comparison, CD28-mediated costimulatory signals appear to function in a reciprocal manner to those induced through 4-1BB costimulation. In vivo examination of the effects of anti-4-1BB monoclonal antibodies (mAbs) on antigen-induced T cell activation have shown that the administration of epitope-specific anti-4-1BB mAbs amplified the generation of H-2d–specific cytotoxic T cells in a murine model of acute graft versus host disease (GVHD) and enhanced the rapidity of cardiac allograft or skin transplant rejection in mice. Cytokine analysis of in vitro activated CD4+ and CD8+ T cells revealed that anti-4-1BB costimulation markedly enhanced interferon-γ production by CD8+ T cells and that anti-4-1BB mediated proliferation of CD8+ T cells appears to be IL-2 independent. The results of these studies suggest that regulatory signals delivered by the 4-1BB receptor play an important role in the regulation of cytotoxic T cells in cellular immune responses to antigen.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                June 12 2019
                June 12 2019
                June 12 2019
                June 12 2019
                : 11
                : 496
                : eaav5989
                Article
                10.1126/scitranslmed.aav5989
                7181714
                31189721
                9cba3fd2-a47e-449f-9ea6-ee4989fca6fa
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article