1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Robotic grippers, inspired by human hands, show an extraordinary ability to manipulate objects of various shapes, sizes, or materials. However, capturing objects with varying kinetic energy remains challenging, regardless of the classical rigid-bodied or frontier soft-bodied grippers. Here, we demonstrate a rapid energy harvesting and dissipation mechanism for the soft grippers leveraging the finger-palm synergy. Theoretically and experimentally, this mechanism enables a soft gripper to reliably capture high-speed targets by dissipating and harvesting almost all the target’s kinetic energy within 30 milliseconds. The energy harvesting and dissipating capability are adjustable and can be enhanced by inflating pressure. Additionally, the harvested energy is autonomously transferred into fingers to enhance their grasping force and reduce the response time. To highlight, the grippers we developed are integrated into a six-rotor drone and successfully capture flying objects in an outdoor experiment. These results significantly advance robotics development in achieving dynamic capture of dynamic targets.

          Abstract

          Soft materials are promising candidates for robotics with outstanding performance and functionality. Zhang et al. present an energy harvesting and dissipation mechanism and describe the development of a soft gripper designed for capturing objects with high kinetic energy.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Design, fabrication and control of soft robots.

          Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An integrated design and fabrication strategy for entirely soft, autonomous robots.

            Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multigait soft robot.

              This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.
                Bookmark

                Author and article information

                Contributors
                Pwei@scu.edu.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                13 December 2022
                13 December 2022
                2022
                : 13
                : 7700
                Affiliations
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, School of Aeronautics and Astronautics, , Sichuan University, ; 610207 Chengdu, China
                [2 ]GRID grid.116068.8, ISNI 0000 0001 2341 2786, Department of Mechanical Engineering, , Massachusetts Institute of Technology, ; Cambridge, MA 02139 USA
                Author information
                http://orcid.org/0000-0002-9094-865X
                http://orcid.org/0000-0002-3428-6444
                Article
                35479
                10.1038/s41467-022-35479-9
                9747793
                36513668
                9c8b44ae-18e0-4b75-b983-bf2a6e57e8f8
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 July 2022
                : 5 December 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 52275206
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                mechanical engineering,actuators,devices for energy harvesting
                Uncategorized
                mechanical engineering, actuators, devices for energy harvesting

                Comments

                Comment on this article