20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      4-Aminoethylamino-emodin – a novel potent inhibitor of GSK-3β– acts as an insulin-sensitizer avoiding downstream effects of activated β-catenin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycogen synthase kinase-3β (GSK-3β) is a key target and effector of downstream insulin signalling. Using comparative protein kinase assays and molecular docking studies we characterize the emodin-derivative 4-[N-2-(aminoethyl)-amino]-emodin (L4) as a sensitive and potent inhibitor of GSK-3β with peculiar features. Compound L4 shows a low cytotoxic potential compared to other GSK-3β inhibitors determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay and cellular ATP levels. Physiologically, L4 acts as an insulin-sensitizing agent that is able to enhance hepatocellular glycogen and fatty acid biosynthesis. These functions are particularly stimulated in the presence of elevated concentrations of glucose and in synergy with the hormone action at moderate but not high insulin levels. In contrast to other low molecular weight GSK-3β inhibitors (SB216763 and LiCl) or Wnt-3α-conditioned medium, however, L4 does not induce reporter and target genes of activated β-catenin such as TOPflash, Axin2 and glutamine synthetase. Moreover, when present together with SB216763 or LiCl, L4 counteracts expression of TOPflash or induction of glutamine synthetase by these inhibitors. Because L4 slightly activates β-catenin on its own, these results suggest that a downstream molecular step essential for activation of gene transcription by β-catenin is also inhibited by L4. It is concluded that L4 represents a potent insulin-sensitizing agent favouring physiological effects of insulin mediated by GSK-3β inhibition but avoiding hazardous effects such as activation of β-catenin-dependent gene expression which may lead to aberrant induction of cell proliferation and cancer.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway

          Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2 . Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of Wnt signaling in development.

            Wnt genes encode a large family of secreted, cysteine-rich proteins that play key roles as intercellular signaling molecules in development. Genetic studies in Drosophila and Caenorhabditis elegans, ectopic gene expression in Xenopus, and gene knockouts in the mouse have demonstrated the involvement of Wnts in processes as diverse as segmentation, CNS patterning, and control of asymmetric cell divisions. The transduction of Wnt signals between cells proceeds in a complex series of events including post-translational modification and secretion of Wnts, binding to transmembrane receptors, activation of cytoplasmic effectors, and, finally, transcriptional regulation of target genes. Over the past two years our understanding of Wnt signaling has been substantially improved by the identification of Frizzled proteins as cell surface receptors for Wnts and by the finding that beta-catenin, a component downstream of the receptor, can translocate to the nucleus and function as a transcriptional activator. Here we review recent data that have started to unravel the mechanisms of Wnt signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis.

              The inactivation of glycogen synthase kinase (GSK)3 has been proposed to play important roles in insulin and Wnt signalling. To define the role that inactivation of GSK3 plays, we generated homozygous knockin mice in which the protein kinase B phosphorylation sites on GSK3alpha (Ser21) and GSK3beta (Ser9) were changed to Ala. The knockin mice were viable and were not diabetic. Using these mice we show that inactivation of GSK3beta rather than GSK3alpha is the major route by which insulin activates muscle glycogen synthase. In contrast, we demonstrate that the activation of muscle glycogen synthase by contraction, the stimulation of muscle glucose uptake by insulin, or the activation of hepatic glycogen synthase by glucose do not require GSK3 phosphorylation on Ser21/Ser9. GSK3 also becomes inhibited in the Wnt-signalling pathway, by a poorly defined mechanism. In GSK3alpha/GSK3beta homozygous knockin cells, Wnt3a induces normal inactivation of GSK3, as judged by the stabilisation of beta-catenin and stimulation of Wnt-dependent transcription. These results establish the function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                June 2010
                18 January 2009
                : 14
                : 6a
                : 1276-1293
                Affiliations
                [a ]Institute of Biochemistry, Medical Faculty University of Leipzig, Germany
                [b ]Institute of Molecular Medicine and Faculty of Biology University of Freiburg, Germany
                [c ]Institute of Biochemistry, Faculty of Biosciences, Pharmacy, and Psychology University of Leipzig, Germany
                [d ]Institute of Pharmacy, Faculty of Biosciences, Pharmacy, and Psychology University of Leipzig, Germany
                Author notes
                *Correspondence to: Rolf GEBHARDT, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany. Tel.: +49-341-9722100 Fax: +49-341-9722109 E-mail: rgebhardt@ 123456medizin.uni-leipzig.de
                [#]

                Present address: German Cancer Research Center (DKFZ), Heidelberg, Germany.

                Article
                10.1111/j.1582-4934.2009.00701.x
                3828845
                19228266
                9c320955-fb86-4cc3-9b89-7a61717e0d2b
                © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 22 December 2008
                : 28 January 2009
                Categories
                Articles

                Molecular medicine
                4-aminoethyl-aminoemodin,β-catenin,glycogen synthase kinase-3β,inhibition,insulin-sensitizer,protein kinase inhibitor,signalling

                Comments

                Comment on this article