115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca 2+ channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          The molecular biology of memory storage: a dialogue between genes and synapses.

          E R Kandel (2001)
          One of the most remarkable aspects of an animal's behavior is the ability to modify that behavior by learning, an ability that reaches its highest form in human beings. For me, learning and memory have proven to be endlessly fascinating mental processes because they address one of the fundamental features of human activity: our ability to acquire new ideas from experience and to retain these ideas over time in memory. Moreover, unlike other mental processes such as thought, language, and consciousness, learning seemed from the outset to be readily accessible to cellular and molecular analysis. I, therefore, have been curious to know: What changes in the brain when we learn? And, once something is learned, how is that information retained in the brain? I have tried to address these questions through a reductionist approach that would allow me to investigate elementary forms of learning and memory at a cellular molecular level-as specific molecular activities within identified nerve cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx.

            Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STIM1, an essential and conserved component of store-operated Ca2+ channel function

              Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                14 July 2015
                2015
                : 9
                : 180
                Affiliations
                [1] 1Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
                [2] 2Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
                [3] 3Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University Higashi-ku, Japan
                [4] 4Behavioral Neuroscience Laboratory, National Neuroscience Institute Singapore, Singapore
                Author notes

                Edited by: Gal Richter-Levin, University of Haifa, Israel

                Reviewed by: Phillip R. Zoladz, Ohio Northern University, USA; Martín Cammarota, Federal University of Rio Grande do Norte, Brazil

                *Correspondence: Zoë Bichler, Behavioral Neuroscience Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore zoe_bichler@ 123456nni.com.sg ;
                Marc Fivaz, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore marc.fivaz@ 123456duke-nus.edu.sg
                Article
                10.3389/fnbeh.2015.00180
                4500926
                26236206
                9be7f489-3735-410c-9151-4e795600bf2c
                Copyright © 2015 Garcia-Alvarez, Shetty, Lu, Yap, Oh-Hora, Sajikumar, Bichler and Fivaz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 April 2015
                : 29 June 2015
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 66, Pages: 12, Words: 9172
                Funding
                Funded by: Singapore Ministry of Education Academic Research Fund
                Award ID: MOE2011-T2-1-107
                Funded by: Agency for Science, Technoloy and Research
                Award ID: Astar/JJSI 13/1/24/26/011
                Funded by: National Medical Research Council
                Award ID: NMRC-CBRG-0041/2013
                Funded by: Singhealth Foundation
                Award ID: SHF/FG504P/2012
                Funded by: Singapore Millenium Foundation
                Categories
                Neuroscience
                Original Research

                Neurosciences
                excitatory synapse,ampa receptor,endoplasmic reticulum,pka,spatial memory,long-term potentiation,stim1 and stim2

                Comments

                Comment on this article