7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kale: Review on nutritional composition, bio-active compounds, anti-nutritional factors, health beneficial properties and value-added products

      1 , 1
      2
      Cogent Food & Agriculture
      Informa UK Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Toxicity, mechanism and health effects of some heavy metals

          Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flavonoids as antioxidants in plants: location and functional significance.

            Stress-responsive dihydroxy B-ring-substituted flavonoids have great potential to inhibit the generation of reactive oxygen species (ROS) and reduce the levels of ROS once they are formed, i.e., to perform antioxidant functions. These flavonoids are located within or in the proximity of centers of ROS generation in severely stressed plants. Efficient mechanisms have been recently identified for the transport of flavonoids from the endoplasmic reticulum, the site of their biosynthesis, to different cellular compartments. The mechanism underlying flavonoid-mediated ROS reduction in plants is still unclear. 'Antioxidant' flavonoids are found in the chloroplast, which suggests a role as scavengers of singlet oxygen and stabilizers of the chloroplast outer envelope membrane. Dihydroxy B-ring substituted flavonoids are present in the nucleus of mesophyll cells and may inhibit ROS-generation making complexes with Fe and Cu ions. The genes that govern the biosynthesis of antioxidant flavonoids are present in liverworts and mosses and are mostly up-regulated as a consequence of severe stress. This suggests that the antioxidant flavonoid metabolism is a robust trait of terrestrial plants. Vacuolar dihydroxy B-ring flavonoids have been reported to serve as co-substrates for vacuolar peroxidases to reduce H(2)O(2) escape from the chloroplast, following the depletion of ascorbate peroxidase activity. Antioxidant flavonoids may effectively control key steps of cell growth and differentiation, thus acting regulating the development of the whole plant and individual organs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quercetin, Inflammation and Immunity

              In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cogent Food & Agriculture
                Cogent Food & Agriculture
                Informa UK Limited
                2331-1932
                January 01 2020
                August 27 2020
                January 01 2020
                : 6
                : 1
                : 1811048
                Affiliations
                [1 ]Bahir Dar University, Bahir Dar, Ethiopia
                [2 ]Middle East Technical University, Food Engineering and Biotechnology, Ankara, Turkey
                Article
                10.1080/23311932.2020.1811048
                9b3d7c65-ef11-4978-a2e2-598c8024d2b1
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article