6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to the growing problem of obesity associated with type 2 diabetes and cardiovascular diseases, causes of obesity are extensively investigated. In addition to a high caloric diet and low physical activity, gut microbiota disturbance may have a potential impact on excessive weight gain. Some reports indicate differences in the composition of the intestinal microflora of obese people in comparison to lean. Bioactive compounds of natural origin with beneficial and multifaceted effects on the body are more frequently used in prevention and treatment of many metabolic diseases including obesity. Sideritis scardica is traditionally consumed as mountain tea in the Balkans to strengthen the body and improve mood. Many reports indicate a positive effect on digestive system, weight loss, and prevention of insulin resistance. Additionally, it exhibits antioxidant activity and anti-inflammatory effects. The positive effect of Sideritis scardica extracts on memory and general cognitive abilities is indicated as well. The multilevel positive effect on the body appears to originate from the abundant occurrence of phenolic compounds, especially phenolic acids in Sideritis scardica extracts. However, mechanisms underlying their action require careful discussion and further research. Therefore, the objective of this review is to summarize the available knowledge on the role and mechanism of action of biologically active compounds of Sideritis scardica and other related species from the genus Sideritis.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Benefits of polyphenols on gut microbiota and implications in human health.

          The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship "polyphenols ↔ microbiota" are still poorly understood. Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apigenin: a promising molecule for cancer prevention.

            Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid shown to possess anti-inflammatory, antioxidant and anticancer properties. Epidemiologic studies suggest that a diet rich in flavones is related to a decreased risk of certain cancers, particularly cancers of the breast, digestive tract, skin, prostate and certain hematological malignancies. It has been suggested that apigenin may be protective in other diseases that are affected by oxidative process, such as cardiovascular and neurological disorders, although more research needs to be conducted in this regard. Human clinical trials examining the effect of supplementation of apigenin on disease prevention have not been conducted, although there is considerable potential for apigenin to be developed as a cancer chemopreventive agent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity.

              Flavones are a class of flavonoids that are a subject of increasing interest because of their biological activities in vitro and in vivo. This article reviews the major sources of flavones and their concentrations in food and beverages, which vary widely between studies. It also covers the roles of flavones in plants, the influence of growing conditions on their concentrations, and their stability during food processing. The absorption and metabolism of flavones are also reviewed, in particular the intestinal absorption of both O- and C-glycosides. Pharmacokinetic studies in both animals and humans are described, comparing differences between species and the effects of glycosylation on bioavailability. Biological activity in animal models and human dietary intervention studies is also reviewed. A better understanding of flavone sources and bioavailability is needed to understand mechanisms of action and nutritional intervention.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                18 August 2020
                August 2020
                : 25
                : 16
                : 3763
                Affiliations
                [1 ]Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; kamila.kulbat-warycha@ 123456p.lodz.pl (K.K.-W.); joanna.oracz@ 123456p.lodz.pl (J.O.)
                [2 ]Faculty of Health Sciences, Medical University of Lodz, 90-647 Lodz, Poland; kaczyze@ 123456gmail.com
                Author notes
                Author information
                https://orcid.org/0000-0003-0989-0671
                https://orcid.org/0000-0003-2469-3369
                Article
                molecules-25-03763
                10.3390/molecules25163763
                7464829
                32824863
                9b07e2b5-c4dd-4454-9ca7-1302a8aaab49
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 July 2020
                : 13 August 2020
                Categories
                Review

                sideritis scardica,polyphenols,biological active compounds,gut microbiota,antioxidant,anti-inflammatory and neuroprotective properties

                Comments

                Comment on this article