2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordinated Shoot and Root Responses to Light Signaling in Arabidopsis

      review-article
      1 , 2 , 1 ,
      Plant Communications
      Elsevier
      light signal transduction, root growth and development, Arabidopsis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light is one of the most important environmental signals and regulates many biological processes in plants. Studies on light-regulated development have mainly focused on aspects of shoot growth, such as de-etiolation, cotyledon opening, inhibition of hypocotyl elongation, flowering, and anthocyanin accumulation. However, recent studies have demonstrated that light is also involved in regulating root growth and development in Arabidopsis. In this review, we summarize the progress in understanding how shoots and roots coordinate their responses to light through different light-signaling components and pathways, including the COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), HY5 (ELONGATED HYPOCOTYL 5), and MYB73/MYB77 (MYB DOMAIN PROTEIN 73/77) pathways.

          Abstract

          This review summarizes and discussese the progress in understanding how shoots and roots coordinate their responses to light through different light-signaling components and pathways.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Local, efflux-dependent auxin gradients as a common module for plant organ formation.

          Plants, compared to animals, exhibit an amazing adaptability and plasticity in their development. This is largely dependent on the ability of plants to form new organs, such as lateral roots, leaves, and flowers during postembryonic development. Organ primordia develop from founder cell populations into organs by coordinated cell division and differentiation. Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips. These gradients are mediated by cellular efflux requiring asymmetrically localized PIN proteins, which represent a functionally redundant network for auxin distribution in both aerial and underground organs. PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development. Our results suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perception of UV-B by the Arabidopsis UVR8 protein.

            To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted destabilization of HY5 during light-regulated development of Arabidopsis.

              Arabidopsis seedlings display contrasting developmental patterns depending on the ambient light. Seedlings grown in the light develop photomorphogenically, characterized by short hypocotyls and expanded green cotyledons. In contrast, seedlings grown in darkness become etiolated, with elongated hypocotyls and dosed cotyledons on an apical hook. Light signals, perceived by multiple photoreceptors and transduced to downstream regulators, dictate the extent of photomorphogenic development in a quantitative manner. Two key downstream components, COP1 and HY5, act antagonistically in regulating seedling development. HY5 is a bZIP transcription factor that binds directly to the promoters of light-inducible genes, promoting their expression and photomorphogenic development. COP1 is a RING-finger protein with WD-40 repeats whose nuclear abundance is negatively regulated by light. COP1 interacts directly with HY5 in the nucleus to regulate its activity negatively. Here we show that the abundance of HY5 is directly correlated with the extent of photomorphogenic development, and that the COP1-HY5 interaction may specifically target HY5 for proteasome-mediated degradation in the nucleus.
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Commun
                Plant Commun
                Plant Communications
                Elsevier
                2590-3462
                22 January 2020
                09 March 2020
                22 January 2020
                : 1
                : 2
                : 100026
                Affiliations
                [1 ]National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, P. R. China
                [2 ]University of Chinese Academy of Sciences, Shanghai 200032, P. R. China
                Author notes
                []Corresponding author htliu@ 123456sibs.ac.cn
                Article
                S2590-3462(20)30007-9 100026
                10.1016/j.xplc.2020.100026
                7748005
                33367230
                9a8ae839-906f-49ce-af1f-a46859bc9619
                © 2020 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 16 November 2019
                : 14 January 2020
                : 16 January 2020
                Categories
                Review Article

                light signal transduction,root growth and development,arabidopsis

                Comments

                Comment on this article